Tropical analytic geometry, Newton polygons, and tropical intersections

被引:41
|
作者
Rabinoff, Joseph [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Tropical geometry; Newton polygon; Tropical intersection theory; Non-Archimedean geometry; RIGID GEOMETRY; VARIETIES;
D O I
10.1016/j.aim.2012.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use the connections between tropical algebraic geometry and rigid-analytic geometry in order to prove two main results. We use tropical methods to prove a theorem about the Newton polygon for convergent power series in several variables: if f(1),...,f(n) are a convergent power series in a variables with coefficients in a non-Archimedean field K, we give a formula for the valuations and multiplicities of the common zeros of f(1),...,f(n). We use rigid-analytic methods to show that stable complete intersections of tropical hypersurfaces compute algebraic multiplicities even when the intersection is not tropically proper. These results are naturally formulated and proved using the theory of tropicalizations of rigid-analytic spaces, as introduced by Einsiedler, Kapranov, and Lind (2006) [14] and Gubler (2007) [20]. We have written this paper to be as readable as possible both to tropical and arithmetic geometers. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3192 / 3255
页数:64
相关论文
共 50 条
  • [11] Lifting nonproper tropical intersections
    Osserman, Brian
    Rabinoff, Joseph
    TROPICAL AND NON-ARCHIMEDEAN GEOMETRY, 2013, 605 : 15 - 44
  • [12] Quadratically enriched tropical intersections
    Jaramillo Puentes, Andres
    Pauli, Sabrina
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025,
  • [13] Tropical geometry and Newton-Okounkov cones for Grassmannian of planes from compactifications
    Manon, Christopher
    Yang, Jihyeon Jessie
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (01): : 199 - 231
  • [14] Tropical algebraic geometry
    Odagiri, Shinsuke
    HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (04) : 771 - 795
  • [15] A Bit of Tropical Geometry
    Brugalle, Erwan
    Shaw, Kristin
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (07): : 563 - 589
  • [16] Tropical toric geometry
    Kajiwara, Takeshi
    TORIC TOPOLOGY, 2008, 460 : 197 - 207
  • [17] An invitation to tropical geometry
    Feichtner, Eva Maria
    EVOLUTIONARY AND INSTITUTIONAL ECONOMICS REVIEW, 2015, 12 (01) : 169 - 176
  • [18] Introduction to tropical geometry
    TROPICAL ALGEBRAIC GEOMETRY, 2009, 35 : 1 - +
  • [19] An invitation to tropical geometry
    Eva Maria Feichtner
    Evolutionary and Institutional Economics Review, 2015, 12 (1) : 169 - 176
  • [20] Geometry in the tropical limit
    I. Itenberg
    G. Mikhalkin
    Mathematische Semesterberichte, 2012, 59 (1) : 57 - 73