Shannon entropy for stationary processes and dynamical systems

被引:0
|
作者
Hamdan, D. [1 ]
Parry, W.
Thouvenot, J. -P.
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, UMR 7599, F-75252 Paris 05, France
关键词
D O I
10.1017/S0143385707001034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider stationary ergodic processes indexed by Z or Z(n) whose finite-dimensional marginals have laws which are absolutely continuous with respect to Lebesgue measure. We define an entropy theory for these continuous processes, prove an analogue of the Shannon - MacMillan - Breiman theorem and study more precisely the particular example of Gaussian processes.
引用
收藏
页码:447 / 480
页数:34
相关论文
共 50 条
  • [31] DYNAMICAL FEATURES OF SHANNON INFORMATION ENTROPY OF BOSONIC CLOUD IN A TIGHT TRAP
    Haldar, Sudip Kumar
    Chakrabarti, Barnali
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (13):
  • [32] Innovation and pattern entropy of stationary processes
    Orlitsky, A
    Santhanam, NP
    Viswanathan, K
    Zhang, J
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 2203 - 2207
  • [33] Stationary C *-dynamical systems
    Hartman, Yair
    Kalantar, Mehrdad
    Bader, Uri
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (05) : 1783 - 1821
  • [34] Point Processes of Non stationary Sequences Generated by Sequential and Random Dynamical Systems
    Ana Cristina Moreira Freitas
    Jorge Milhazes Freitas
    Mário Magalhães
    Sandro Vaienti
    Journal of Statistical Physics, 2020, 181 : 1365 - 1409
  • [35] Point Processes of Non stationary Sequences Generated by Sequential and Random Dynamical Systems
    Freitas, Ana Cristina Moreira
    Freitas, Jorge Milhazes
    Magalhaes, Mario
    Vaienti, Sandro
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1365 - 1409
  • [36] Markov and non-Markov processes in complex systems by the dynamical information entropy
    Yulmetyev, RM
    Gafarov, FM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 274 (1-2) : 381 - 384
  • [37] Extended memory processes generated by simple dynamical systems and scaling behavior of the entropy
    Courbage, M
    Malherbe, JG
    CHAOS SOLITONS & FRACTALS, 2002, 13 (02) : 253 - 260
  • [38] Entropy of fuzzy dynamical systems
    Riecan, B
    STATE OF THE ART IN COMPUTATIONAL INTELLIGENCE, 2000, : 394 - 396
  • [39] Dynamical systems with entropy operator
    Popkov Yu.S.
    Computational Mathematics and Modeling, 2000, 11 (2) : 181 - 186
  • [40] Entropy of Nonautonomous Dynamical Systems
    Kawan, Christoph
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 179 - 191