Numerical Solution of a Class of Time-Fractional Order Diffusion Equations in a New Reproducing Kernel Space

被引:1
|
作者
Zhang, Xiaoli [1 ,2 ]
Zhang, Haolu [3 ]
Jia, Lina [2 ]
Wang, Yulan [2 ]
Zhang, Wei [1 ]
机构
[1] Jining Normal Univ, Inst Econ & Management, Jining 012000, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ Technol, Dept Math, Hohhot 010051, Peoples R China
[3] Inner Mongolia Univ Technol, Sch Civil Engn, Hohhot 010051, Peoples R China
关键词
BOUNDARY-VALUE-PROBLEMS; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD;
D O I
10.1155/2020/1794975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we structure some new reproducing kernel spaces based on Jacobi polynomial and give a numerical solution of a class of time fractional order diffusion equations using piecewise reproducing kernel method (RKM). Compared with other methods, numerical results show the reliability of the present method.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain
    Du, Hong
    Chen, Zhong
    Yang, Tiejun
    APPLIED MATHEMATICS LETTERS, 2021, 116
  • [42] Maximum Principles for a Class of Generalized Time-Fractional Diffusion Equations
    Shengda Zeng
    Stanisław Migórski
    Thien Van Nguyen
    Yunru Bai
    Fractional Calculus and Applied Analysis, 2020, 23 : 822 - 836
  • [43] MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS
    Zeng, Shengda
    Migorski, Stanislaw
    Van Thien Nguyen
    Bai, Yunru
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 822 - 836
  • [44] Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
    Abu Arqub, Omar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (04) : 828 - 856
  • [45] A stability result for the determination of order in time-fractional diffusion equations
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (03): : 379 - 388
  • [46] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [47] THE REPRODUCING KERNEL FOR THE REACTION-DIFFUSION MODEL WITH A TIME VARIABLE FRACTIONAL ORDER
    Zhang, Wei
    Wang, Yulan
    Wang, Meichun
    THERMAL SCIENCE, 2020, 24 (04): : 2553 - 2559
  • [48] A new algorithm for fractional differential equation based on fractional order reproducing kernel space
    Zhang, Ruimin
    Lin, Yingzhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2171 - 2182
  • [49] The exact solution for solving a class nonlinear operator equations in the reproducing kernel space
    Li, CL
    Cui, MG
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) : 393 - 399
  • [50] A numerical method for the distributed order time-fractional diffusion equation
    Ford, Neville J.
    Morgado, M. Luisa
    Rebelo, Magda
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,