Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway

被引:27
|
作者
Liang, S. [1 ]
Wang, Y. [2 ]
Liu, Y. [2 ]
机构
[1] Hebei Univ, Dept Anesthesiol, Affiliated Hosp, Baoding, Peoples R China
[2] Harbin Med Univ, Dept Anesthesiol, Canc Hosp, Harbin, Heilongjiang, Peoples R China
关键词
Lung ischemia-reperfusion; Dexmedetomidine; PI3K/Akt; Lung injury; ISCHEMIA/REPERFUSION INJURY; MECHANICAL VENTILATION; APOPTOSIS; PROTECTS; INHIBITION; SEDATION; MODEL;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: This research aims to investigate the role and mechanism of PI3K/Akt pathway in the pathological process of lung ischemia-reperfusion injury in dexmedetomidine-treated rats. MATERIALS AND METHODS: Forty-five healthy male Sprague-Dawley rats were divided into three groups: sham operation group, lung ischemia-reperfusion group (IR group) and dexmedetomidine pretreatment group (Dex group). Rats in the sham operation group did not receive other procedures except for opening left chest. The left lung hilar of rats in the IR group was clamped with non-invasive vascular clamp after anesthesia to establish an ischemic model. After 1 hour, the vascular clamp was released and the rats were reperfused for 2 hours. As for rats in the Dex group, 3 mu g/kg of dexmedetomidine (pumping time of 10 min) was pumped through the tail vein before releasing the left hilar clamp. After the experiment, blood samples and lung tissues were collected. Serum levels of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha). IL-10, and IL-1 in rats were examined. Activities of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) in rat lung tissues were also detected. Besides, the expressions of hypoxia-inducible factor-la (HIF-la), p-Akt, Caspase-3, and Caspase-9 in lung tissues were detected by Western blot. The mRNA expression levels of HIF-1a, p-Akt. Caspase-3, and Caspase-9 in lung tissues were evaluated by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). RESULTS: Lung ischemia-reperfusion markedly increased the levels of IL-6, TNF-alpha, IL-10, and IL-1 in the IR group. In contrast, dexmedetomidine pretreatment decreased the expression levels of IL-6, TNF-alpha, IL-10, and IL-1in the Dex group. Also, the activities of MDA and MPO in lung tissues of rats in the IR group significantly increased after lung ischemia-reperfusion injury, whereas dexmedetomidine pretreatment reversed the elevated activities of MDA and MPO in the Dex group. Furthermore, dexmedetomidine pretreatment also improved the activities of SOD and CAT in rat lung tissues compared with rats with lung ischemia-reperfusion injury. In addition, dexmedetomidine pretreatment increased the expression levels of HIF-l alpha, p-Akt and HIF- in the Dex group when compared to those in the IR group. The mRNA expressions of HIF-1a, p-Akt, Caspase-3, and Caspase-9 in lung tissue of rats was significantly reduced after dexmedetomidine pretreatment. CONCLUSIONS: Rat lung ischemia-reperfusion can induce severe lung injury. Dexmedetomidine treatment can attenuate lung ischemia-reperfusion injury by activating the PI3K/Akt signaling pathway at the transcriptional level.
引用
收藏
页码:370 / 377
页数:8
相关论文
共 50 条
  • [41] Dexmedetomidine attenuates lung apoptosis induced by renal ischemia–reperfusion injury through α2AR/PI3K/Akt pathway
    Juanjuan Li
    Qian Chen
    Xinhai He
    Azeem Alam
    Jiaolin Ning
    Bin Yi
    Kaizhi Lu
    Jianteng Gu
    Journal of Translational Medicine, 16
  • [42] Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway
    Cheng, Xiangyang
    Hu, Jing
    Wang, Ya
    Ye, Hongwei
    Li, Xiaohong
    Gao, Qin
    Li, Zhenghong
    JOURNAL OF DIABETES RESEARCH, 2018, 2018
  • [43] Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury
    Ajzashokouhi, Amir Hossein
    Rezaee, Ramin
    Omidkhoda, Navid
    Karimi, Gholamreza
    CELL CYCLE, 2023, 22 (07) : 741 - 757
  • [44] Poncirin ameliorates cardiac ischemia-reperfusion injury by activating PI3K/AKT/PGC-1α signaling
    Li, Bingda
    Chen, Tianpeng
    Hu, Wenfeng
    Wang, Zhenhua
    Wu, Ji
    Zhou, Qing
    Li, Ping
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 917
  • [45] Dexmedetomidine pretreatment protects the heart against apoptosis in ischemia/reperfusion injury in diabetic rats by activating PI3K/Akt signaling in vivo and in vitro
    Chang, Jian-Hua
    Jin, Mei-Mei
    Liu, Jun-Tian
    BIOMEDICINE & PHARMACOTHERAPY, 2020, 127
  • [46] Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway
    Sun, Yanjun
    Jiang, Chuan
    Jiang, Jun
    Qiu, Lisheng
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2017, 44 (09): : 946 - 953
  • [47] Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats
    Tian, Xiaocui
    An, Ruidi
    Luo, Yujie
    Li, Minghang
    Xu, Lu
    Dong, Zhi
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (07): : 1832 - 1840
  • [48] Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway
    Chi, Y.
    Ma, Q.
    Ding, X-Q
    Qin, X.
    Wang, C.
    Zhang, J.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (10) : 4465 - 4473
  • [49] Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways
    Wei, Dajun
    Xu, Hongjie
    Gai, Xiaodong
    Jiang, Ying
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (07)
  • [50] Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway
    Jiao, Shujie
    Zhu, Hongcan
    He, Ping
    Teng, Junfang
    BIOMEDICINE & PHARMACOTHERAPY, 2016, 84 : 1533 - 1537