Computation with varied-strength attacks in abstract argumentation frameworks

被引:6
|
作者
Dunne, Paul E. [1 ]
Martinez, Diego C. [2 ]
Garcia, Alejandro J. [2 ]
Simari, Guillermo R. [2 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
[2] Univ Nacl Sur, Dept Comp Sci & Engn, Bahia Blanca, Buenos Aires, Argentina
关键词
Computational properties of argumentation; varied-strength attacks; abstract argumentation frameworks; computational complexity;
D O I
10.3233/978-1-60750-619-5-207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In abstract frameworks with varied strength attacks (AFV), arguments may attack each other with different strength. An admissible scenario is an admissible set of arguments fulfilling certain strength conditions about defences. In this work we analyze the computational complexity of some decision problems related to the quality of admissible scenarios: checking the property of being top-admissible and the property of being equilibrated. These problems are implying an exhaustive comparison between scenarios, and both of them are shown to be coNP-complete.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [41] On the Complexity of Enumerating the Extensions of Abstract Argumentation Frameworks
    Kroell, Markus
    Pichler, Reinhard
    Woltran, Stefan
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1145 - 1152
  • [42] Collective argumentation with topological restrictions: the case of aggregating abstract argumentation frameworks
    Chen, Weiwei
    JOURNAL OF LOGIC AND COMPUTATION, 2023, 33 (02) : 319 - 343
  • [43] Strong Equivalence for Argumentation Frameworks with Collective Attacks
    Dvorak, Wolfgang
    Rapberger, Anna
    Woltran, Stefan
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019, 2019, 11793 : 131 - 145
  • [44] Preservation of semantic properties in collective argumentation: The case of aggregating abstract argumentation frameworks
    Chen, Weiwei
    Endriss, Ulle
    ARTIFICIAL INTELLIGENCE, 2019, 269 : 27 - 48
  • [45] On Scaling the Enumeration of the Preferred Extensions of Abstract Argumentation Frameworks
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1147 - 1153
  • [46] Probabilistic Bipolar Abstract Argumentation Frameworks: Complexity Results
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1803 - 1809
  • [47] Quantitative Reasoning over Incomplete Abstract Argumentation Frameworks
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    Monterosso, Giuseppina
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 3360 - 3368
  • [48] On checking skeptical and ideal admissibility in abstract argumentation frameworks
    Nofal, Samer
    Atkinson, Katie
    Dunne, Paul E.
    INFORMATION PROCESSING LETTERS, 2019, 148 : 7 - 12
  • [49] Learning Argument Acceptability from Abstract Argumentation Frameworks
    Kido, Hiroyuki
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2017, 10091 : 348 - 362
  • [50] On the Semantics of Abstract Argumentation Frameworks: A Logic Programming Approach
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    Trubitsyna, Irina
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2020, 20 (05) : 703 - 718