Chaos Analysis and Control of Relative Rotation System with Mathieu-Duffing Oscillator

被引:0
|
作者
Zhang, Yu [1 ]
Li, Longsuo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
关键词
D O I
10.1155/2015/348462
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chaos analysis and control of relative rotation nonlinear dynamic system with Mathieu-Duffing oscillator are investigated. By using Lagrange equation, the dynamics equation of relative rotation system has been established. Melnikov's method is applied to predict the chaotic behavior of this system. Moreover, the chaotic dynamical behavior can be controlled by adding the Gaussian white noise to the proposed system for the sake of changing chaos state into stable state. Through numerical calculation, the Poincare map analysis and phase portraits are carried out to confirm main results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Non-trivial solutions and their stability in a two-degree-of-freedom Mathieu-Duffing system
    Barakat, Ahmed A. A.
    Weig, Eva M. M.
    Hagedorn, Peter
    NONLINEAR DYNAMICS, 2023, 111 (24) : 22119 - 22136
  • [32] Chaos control in duffing system
    Wang, RQ
    Deng, J
    Jing, ZJ
    CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 249 - 257
  • [33] Strategies for the control of chaos in a Duffing-Holmes oscillator
    Sifakis, MK
    Elliott, SJ
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2000, 14 (06) : 987 - 1002
  • [34] Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method
    J. H. Shen
    K. C. Lin
    S. H. Chen
    K. Y. Sze
    Nonlinear Dynamics, 2008, 52 : 403 - 414
  • [35] Exploiting the attractor structure for chaos feedback control: The Duffing oscillator
    Alvarez-Ramirez, J
    Espinosa-Paredes, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (10): : 3661 - 3670
  • [36] Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control
    Shaofang Wen
    Hao Qin
    Yongjun Shen
    Jiangchuan Niu
    The European Physical Journal Special Topics, 2022, 231 : 2183 - 2197
  • [37] Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control
    Wen, Shaofang
    Qin, Hao
    Shen, Yongjun
    Niu, Jiangchuan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (11-12): : 2183 - 2197
  • [38] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
    Liu Shuang
    Zhao Shuang-Shuang
    Sun Bao-Ping
    Zhang Wen-Ming
    CHINESE PHYSICS B, 2014, 23 (09)
  • [39] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
    刘爽
    赵双双
    孙宝平
    张文明
    ChinesePhysicsB, 2014, 23 (09) : 275 - 281
  • [40] Chaos control analysis for mathieu equation by three methods
    Li, Xianfeng
    Chu, Yandong
    Liu, Xiaojun
    Deng, Jin
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (01): : 35 - 37