A SPARSE REPRESENTATION BASED POST-PROCESSING METHOD FOR IMPROVING IMAGE SUPER-RESOLUTION

被引:0
|
作者
Yang, Jun [1 ,2 ]
Guo, Jun [1 ]
Chao, Hongyang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou Shi, Guangdong Sheng, Peoples R China
[2] SYSU CMU Shunde Int Joint Res Inst, Foshan, Peoples R China
关键词
Image super resolution; group sparse representation; linear subspace approximation; back projection; iterative fine-tuning and approximation (IFA);
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this work is image super-resolution (SR), where the input is specified by a low-resolution image and a consistent higher-resolution image should be returned. We propose a post-processing procedure named iterative fine-tuning and approximation (IFA) for mainstream SR methods. Internal image statistics are complemented by iteratively fine-tuning and performing linear subspace approximation on the outputs of existing external SR methods, helping to better reconstruct missing details and reduce unwanted artifacts. The primary concept of our method is that it first explores and enhances internal image information by grouping similar image patches and then finds their sparse representations by iteratively learning the bases, thereby enhancing the primary structures and some details of the image. Experiment results demonstrate that the proposed IFA can yield substantial improvements for most existing methods via tweaking their outputs, achieving state-of-the-art performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Sparse Representation to Solve the Problem of Image Super-Resolution
    Alvarez-Ramos, Valentin
    Ponomaryov, Volodymyr
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP), 2016, : 156 - 161
  • [22] Image Super-resolution Reconstruction based on Deep Learning and Sparse Representation
    Lei, Qian
    Zhang, Zhao-hui
    Hao, Cun-ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 546 - 555
  • [23] Image super-resolution based on multi-space sparse representation
    Jing, Guodong
    Shi, Yunhui
    Kong, Dehui
    Ding, Wenpeng
    Yin, Baocai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (02) : 741 - 755
  • [24] Image super-resolution reconstruction based on sparse representation and deep learning
    Zhang, Jing
    Shao, Minhao
    Yu, Lulu
    Li, Yunsong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 87
  • [25] Image super-resolution reconstruction based on sparse representation and residual compensation
    史郡
    王晓华
    JournalofBeijingInstituteofTechnology, 2013, 22 (03) : 394 - 399
  • [26] Image Super-Resolution Based on Structure-Modulated Sparse Representation
    Zhang, Yongqin
    Liu, Jiaying
    Yang, Wenhan
    Guo, Zongming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2797 - 2810
  • [27] Single image super-resolution based on sparse representation of wavelet coefficients
    Liao, X. (lxx0221@yahoo.com.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [28] Remote sensing image super-resolution based on improved sparse representation
    Zhu F.-Z.
    Liu Y.
    Huang X.
    Bai H.-Y.
    Wu H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (03): : 718 - 725
  • [29] Image super-resolution reconstruction based on sparse representation and residual compensation
    Wang, X.-H. (xh_wong@bit.edu.cn), 1600, Beijing Institute of Technology (22):
  • [30] Super-resolution PET image reconstruction with sparse representation
    Hu, Zhanli
    Li, Tao
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,