Electric-Field-Driven Resistive Switching in the Dissipative Hubbard Model

被引:47
|
作者
Li, Jiajun [1 ]
Aron, Camille [2 ,3 ]
Kotliar, Gabriel [2 ]
Han, Jong E. [1 ]
机构
[1] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[2] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08455 USA
基金
美国国家科学基金会;
关键词
GAP MOTT INSULATORS; TRANSITION; V2O3; VO2;
D O I
10.1103/PhysRevLett.114.226403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study how strongly correlated electrons on a dissipative lattice evolve out of equilibrium under a constant electric field, focusing on the extent of the linear regime and hysteretic nonlinear effects at higher fields. We access the nonequilibrium steady states, nonperturbatively in both the field and the electronic interactions, by means of a nonequilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime, limited by Joule heating, breaks down at fields much smaller than the quasiparticle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. We predict a nonmonotonic upper switching field due to an interplay of particle renormalization and the field-driven temperature. Hysteretic I-V curves suggest that the nonequilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure
    Yadong Wang
    Lei Wang
    Jing Xia
    Zhengxun Lai
    Guo Tian
    Xichao Zhang
    Zhipeng Hou
    Xingsen Gao
    Wenbo Mi
    Chun Feng
    Min Zeng
    Guofu Zhou
    Guanghua Yu
    Guangheng Wu
    Yan Zhou
    Wenhong Wang
    Xi-xiang Zhang
    Junming Liu
    Nature Communications, 11
  • [22] Terahertz electric-field-driven dynamical multiferroicity in SrTiO3
    Basini, M.
    Pancaldi, M.
    Wehinger, B.
    Udina, M.
    Unikandanunni, V.
    Tadano, T.
    Hoffmann, M. C.
    Balatsky, A. V.
    Bonetti, S.
    NATURE, 2024, 628 (8008) : 534 - 539
  • [23] Electric-field-driven jet deposition 3D printing
    Qian L.
    Lan H.
    Zhao J.
    Zhou H.
    Zou S.
    Zhu X.
    Li D.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2018, 48 (07): : 773 - 782
  • [24] New electric-field-driven mesoscale phase transitions in polarized suspensions
    Kumar, A
    Khusid, B
    Qiu, ZY
    Acrivos, A
    PHYSICAL REVIEW LETTERS, 2005, 95 (25)
  • [25] Interplay of bulk and interface effects in the electric-field-driven transition in magnetite
    Fursina, A. A.
    Sofin, R. G. S.
    Shvets, I. V.
    Natelson, D.
    PHYSICAL REVIEW B, 2010, 81 (04):
  • [26] Electric-Field-Driven Jetting Phenomenon Applied to Process Living Cells
    Steven Trohalaki
    MRS Bulletin, 2006, 31 : 291 - 291
  • [27] Electric-field-driven assembly of oriented molecular-sieve films
    Lin, JC
    Yates, MZ
    Petkoska, AT
    Jacobs, S
    ADVANCED MATERIALS, 2004, 16 (21) : 1944 - +
  • [28] Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
    Gonzalez, Diego Lopez
    Shirahata, Yasuhiro
    Van de Wiele, Ben
    Franke, Kevin J. A.
    Casiraghi, Arianna
    Taniyama, Tomoyasu
    van Dijken, Sebastiaan
    AIP ADVANCES, 2017, 7 (03)
  • [29] Electric-field-driven jetting phenomenon applied to process living cells
    Trohalaki, S
    MRS BULLETIN, 2006, 31 (04) : 291 - 291
  • [30] Reversible Electric-Field-Driven Magnetic Domain-Wall Motion
    Franke, Kevin J. A.
    Van de Wiele, Ben
    Shirahata, Yasuhiro
    Hamalainen, Sampo J.
    Taniyama, Tomoyasu
    van Dijken, Sebastiaan
    PHYSICAL REVIEW X, 2015, 5 (01):