Hybridization in wire arc additive manufacturing

被引:8
|
作者
Kapil, Sajan [1 ]
Rajput, Atul Singh [1 ]
Sarma, Ritam [1 ]
机构
[1] Indian Inst Technol Guwahati, Gauhati, India
关键词
wire arc additive manufacturing; hybrid-deposition processes; hybrid-manufacturing processes; hybrid-layering strategies; hybrid-machine tools; hybrid-raw stock; THIN-WALLED PARTS; MECHANICAL-PROPERTIES; RESIDUAL-STRESS; STAINLESS-STEEL; CRACKING SUSCEPTIBILITY; TENSILE PROPERTIES; HEAT-TREATMENT; MICROSTRUCTURE; METAL; ALLOY;
D O I
10.3389/fmech.2022.981846
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Wire Arc Additive Manufacturing (WAAM) can produce a near-net shape of an object within a short period due to its capability of high deposition rate compared with other metal Additive Manufacturing (AM) processes. The recent developments in the WAAM have increased its efficiency and cost-effectiveness in producing viable products. However, poor surface quality, porosities, residual stresses, distortions, and anisotropic mechanical properties are a few inherent challenges still associated with the WAAM, which necessitates the hybridization of this process. Hybrid-WAAM is a synergic integration of one or more deposition processes, manufacturing processes, layering strategies, raw stock materials, and machine tool kinematics that are fully coupled and affect part quality, functionality, and process performance. This paper comprehensively reviews different levels of hybridization in the WAAM to eliminate its associated challenges. These levels of hybridizations are classified into five categories: hybrid-deposition processes, hybrid-manufacturing processes, hybrid-layering strategies, hybrid-machine tools, and hybrid-raw stock. Furthermore, these levels of hybridization are mapped to eliminate the associated defects/challenges in the WAAM, which will help the readers select an appropriate level of hybridization.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM)
    Huang, Lei
    Chen, Xizhang
    Konovalov, Sergey
    Su, Chuanchu
    Fan, Pengfei
    Wang, Yanhu
    Xiaoming, Pan
    Panchenko, Irina
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (05) : 1123 - 1139
  • [22] A review on wire and arc additive manufacturing of titanium alloy
    Lin, Zidong
    Song, Kaijie
    Yu, Xinghua
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 70 : 24 - 45
  • [23] Wire Arc Additive Manufacturing of Stainless Steels: A Review
    Jin, Wanwan
    Zhang, Chaoqun
    Jin, Shuoya
    Tian, Yingtao
    Wellmann, Daniel
    Liu, Wen
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [24] Applications of wire arc additive manufacturing (WAAM) for aerospace component manufacturing
    Harshita Pant
    Anisha Arora
    Ganga Sutha Gopakumar
    Utkarsh Chadha
    Amir Saeidi
    Albert E. Patterson
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 4995 - 5011
  • [25] Applications of wire arc additive manufacturing (WAAM) for aerospace component manufacturing
    Pant, Harshita
    Arora, Anisha
    Gopakumar, Ganga Sutha
    Chadha, Utkarsh
    Saeidi, Amir
    Patterson, Albert E.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (11-12): : 4995 - 5011
  • [26] THERMO-MECHANICAL BEHAVIOR OF MULTI-LAYER DEPOSITION FOR WIRE ARC ADDITIVE MANUFACTURING OF STRUCTURAL STEEL: WIRE ARC ADDITIVE MANUFACTURING
    Kumar, Amritesh
    Bag, Swarup
    Srivastava, V. C.
    Amin, M. Ruhul
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,
  • [27] Metal Additive Manufacturing: An Overview and Perspectives for GMAW-based Wire Arc Additive Manufacturing
    Rezende, Rogério Ferreira
    Arias, Ariel Rodríguez
    Lima, Eduardo José
    Coelho, Fagner Guilherme Ferreira
    Soldagem e Inspecao, 2024, 29
  • [28] Hybridization in Metal Wire Additive Manufacturing: A Case Study of an Impeller
    Karade, Shahu R.
    Siddhartha, Siddhartha
    Gupta, Neel Kamal
    Ganesan, G.
    Karunakaran, K. P.
    Zeidler, Henning
    METALS, 2025, 15 (01)
  • [29] Heat Transfer to the Wire Based on Multiphysics Model for Wire Arc Additive Manufacturing
    Li, Yan
    Wu, Juanhui
    Yun, Ze
    Su, Chen
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (07) : 1 - 9
  • [30] Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing
    Hejripour, Fatemeh
    Valentine, Daniel T.
    Aidun, Daryush K.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 125 : 471 - 484