DEEP SELF-SUPERVISED BAND-LEVEL LEARNING FOR HYPERPSPECTRAL CLASSIFICATION

被引:1
|
作者
Santiago, Jonathan Gonzalez [1 ]
Schenkel, Fabian [1 ]
Middelmann, Wolfgang [1 ]
机构
[1] Fraunhofer IOSB, Gutleuthausstr 1, Ettlingen, Germany
关键词
Self-Supervised Learning; Band-Level Learning; Contrastive Learning; Transfer Learning; Deep Convolutional Neural Networks; Hyperspectral Classification;
D O I
10.1117/12.2636245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image classification is one of the most researched topics within hyperspectral analysis. Its importance is determined by its immediate outcome, a classified image used for planning and decision-making processes within a variety of engineering and scientific disciplines. Within the last few years, researchers have solved this task employing self-supervised learning to learn robust feature representations to alleviate the dependency on large amounts of labels required by supervised deep learning. Aiming to learn representations for hyperspectral classification purposes, several of these works use dimensionality reduction that could exclude relevant information during feature learning. Moreover, they are based on contrastive instance learning that requires a large memory bank to store the result of pairwise feature discriminations, which represents a computational hurdle. To overcome these challenges, the current approach performs self-supervised cluster assignments between sets of contiguous bands to learn semantically meaningful representations that accurately contribute to solving the hyperspectral classification task with fewer labels. The approach starts with the pre-processing of the data for self-supervised learning purposes. Subsequently, the self-supervised band-level learning phase takes the preprocessed image patches to learn relevant feature representations. Afterwards, the classification step uses the previously learned encoder model and turns it into a pixel classifier to execute the classification with fewer labels than awaited. Lastly, the validation makes use of the kappa coefficient, and the overall and average accuracy as well-established metrics for assessing classification results. The method employs two benchmark datasets for evaluation. Experimental results show that the classification quality of the proposed method surpasses supervised learning and contrastive instance learning-based methods for the majority of the studied data partition levels. The construction of the most adequate set of augmentations for hyperspectral imagery also indicated the potential of the results to further improve.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts
    Abdulrazzaq, Mohammed Majid
    Ramaha, Nehad T. A.
    Hameed, Alaa Ali
    Salman, Mohammad
    Yon, Dong Keon
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    Lee, Seung Won
    MATHEMATICS, 2024, 12 (05)
  • [42] A New Deep Learning Method with Self-Supervised Learning for Delineation of the Electrocardiogram
    Wu, Wenwen
    Huang, Yanqi
    Wu, Xiaomei
    ENTROPY, 2022, 24 (12)
  • [43] Nearest Neighboring Self-Supervised Learning for Hyperspectral Image Classification
    Qin, Yao
    Ye, Yuanxin
    Zhao, Yue
    Wu, Junzheng
    Zhang, Han
    Cheng, Kenan
    Li, Kun
    REMOTE SENSING, 2023, 15 (06)
  • [44] LFM Signal Sources Classification Based on Self-Supervised Learning
    Yang, Tianqi
    Mi, Siya
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2023, 112 : 103 - 110
  • [45] Classification-Based Self-Supervised Learning for Anomaly Detection
    Li, Honghu
    Zhu, Yuesheng
    He, Ying
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [46] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [47] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [48] A Classification Method for Diabetic Retinopathy Based on Self-supervised Learning
    Long, Fei
    Xiong, Haoren
    Sang, Jun
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 347 - 357
  • [49] Comparison between Supervised and Self-supervised Deep Learning for SEM Image Denoising
    Okud, Tomoyuki
    Chen, Jun
    Motoyoshi, Takahiro
    Yumiba, Ryou
    Ishikawa, Masayoshi
    Toyoda, Yasutaka
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [50] Deep Semi-Supervised and Self-Supervised Learning for Diabetic Retinopathy Detection
    Arrieta, Jose
    Perdomo, Oscar J.
    Gonzalez, Fabio A.
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567