Comparative Proteomics Reveals the Mechanisms Underlying Variations in Seed Vigor Based on Maize (Zea mays L.) Ear Positions

被引:12
|
作者
Li, Yan [1 ]
Qu, Haibin [1 ]
Zhu, Pengyu [1 ]
Su, Kemei [1 ]
Zhang, Chunqing [1 ]
机构
[1] Shandong Agr Univ, Agron Coll, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Aquaporins; Fungal resistance; Proteomics; Seed position; Seed vigor; Zea mays; FUNGAL-INFECTION; PLANT AQUAPORINS; GERMINATION; TONOPLAST; PROTEINS; BIOGENESIS; EXPRESSION; LEAVES; ALPHA;
D O I
10.1007/s11105-018-1115-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Seed vigor is influenced by seed position in plant. However, current understanding of its underlying mechanism is limited. In this study, we used isobaric tags for relative and absolute quantitation technique to study the comparative proteomes between middle seeds (with higher vigor) and top seeds of maize (Zea mays L.) ears at 0 h, 24 h, and 48 h of imbibition. A total of 159 differentially accumulated proteins were identified. Among these, the largest number of proteins was from the functional categories of Disease/Defense and Metabolism. Compared with top seeds, most of the differentially accumulated proteins of Protein Synthesis and Energy showed higher accumulation in middle seeds at 0 h and 24 h of imbibition, but lower accumulation at 48 h of imbibition. Seed water absorption activates metabolic processes. The water content of middle seeds was significantly lower than that of top seeds at between 12 h and 30 h of imbibition, but energy production would be higher in the middle seeds at 24 h of imbibition. Meanwhile, tonoplast intrinsic proteins 3.1 and 3.2, which mediate water inflow into protein storage vacuoles, then activating enzymes involved in reserve mobilization, showed higher accumulation in middle seeds at 24 h of imbibition. In addition, our data also showed middle seeds may suffer less fungal damages. Our results contribute to understanding the mechanisms underlying the effects of growth position on seed vigor.
引用
收藏
页码:738 / 749
页数:12
相关论文
共 50 条
  • [41] Detection of genetically modified maize (Zea mays L.) in seed samples from Nepal
    Shrestha, Hari Kumar
    Hwu, Kae-Kang
    Chang, Men-Chi
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (34): : 5581 - 5589
  • [42] Effects of priming techniques on seed germination and seedling emergence of maize (Zea mays L.)
    Mir-Mahmoodi, Tooraj
    Ghassemi-Golezani, Kazem
    Habibi, Davood
    Paknezhad, Farzad
    Ardekani, Mohammad Reza
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 200 - 202
  • [43] Impact of Temperature and Water on Seed Germination and Seedling Growth of Maize (Zea mays L.)
    Khaeim, Hussein
    Kende, Zoltan
    Jolankai, Marton
    Kovacs, Gergo Peter
    Gyuricza, Csaba
    Tarnawa, Akos
    AGRONOMY-BASEL, 2022, 12 (02):
  • [44] Seed germination, and growth and development of maize (Zea mays L.) seedlings in chilling conditions
    Maslak, J.
    Baczek-Kwinta, R.
    Oleksiewicz, A.
    Grzesiak, M. T.
    Grzesiak, S.
    ACTA PHYSIOLOGIAE PLANTARUM, 2007, 29 : S82 - S82
  • [45] Effect of fusarium seed infection on the chilling tolerance of maize (Zea mays L.) at emergence
    Marton, LC
    Kizmus, L
    Nagy, E
    NOVENYTERMELES, 2000, 49 (03): : 261 - 272
  • [46] Correlations between the seed fractions and the yield components of hybrid maize (Zea mays L.)
    Záborszky, S
    Berzy, T
    NOVENYTERMELES, 1999, 48 (06): : 591 - 599
  • [47] The Itemization of Variations in Tassel-Ear Mutant and Normal Maize (Zea mays L.) Plants: 1. Organelle Genomes
    D. B. Khandhar
    P. P. Bhatt
    V. S. Thaker
    Russian Journal of Genetics, 2023, 59 : 919 - 929
  • [48] The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize (Zea mays L.) under Salt Stress
    Wang, Jiajie
    Yan, Di
    Liu, Rui
    Wang, Ting
    Lian, Yijia
    Lu, Zhenzong
    Hong, Yue
    Wang, Ye
    Li, Runzhi
    PLANTS-BASEL, 2024, 13 (15):
  • [49] Effect of seed storage temperature and relative humidity on maize (Zea mays L.) seed viability and vigour
    Abba, EJ
    Lovato, A
    SEED SCIENCE AND TECHNOLOGY, 1999, 27 (01) : 101 - 114
  • [50] Analysis of gamma radiation-induced chromosome variations in maize (Zea mays L.)
    Viccini, LF
    De Carvalho, CR
    CARYOLOGIA, 2001, 54 (04) : 319 - 327