Zn1-xMgxTe nanowires grown by solid source molecular beam epitaxy

被引:11
|
作者
Janik, E. [1 ]
Dynowska, E. [1 ]
Dluzewski, P. [1 ]
Kret, S. [1 ]
Presz, A. [2 ]
Zaleszczyk, W. [1 ]
Szuszkiewicz, W. [1 ]
Morhange, J. F. [3 ]
Petroutchik, A. [1 ]
Mackowski, S. [4 ]
Wojtowicz, T. [1 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02660 Warsaw, Poland
[2] Polish Acad Sci, Inst High Pressure Phys UNIPRESS, PL-01142 Warsaw, Poland
[3] UPMC, Inst Nanosci Paris, CNRS, F-75015 Paris, France
[4] Nicholas Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
关键词
D O I
10.1088/0957-4484/19/36/365606
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports on the epitaxial growth of single-crystalline ternary Zn1-xMgxTe nanowires covering a broad compositional range of molar fraction 0 <= x <= 0.75. The nanowires were grown on (100), (110), and (111) GaAs substrates using a vapor-liquid-solid mechanism. Solid source molecular beam epitaxy and an Au-based nanocatalyst were used for these purposes. The composition of nanowires can be adjusted by changing the ratio of Mg to Zn molecular beam fluxes. Electron microscopy images show that the nanowires are smooth and slightly tapered. The diameters of the obtained nanowires are from 30 to 70 nm and their length is around 1 mu m. X-ray diffraction analysis and transmission electron microscopy reveal that the nanowires have a zinc-blende structure throughout the whole range of obtained compositions, and have a < 111 > growth axis. The Raman measurements reveal both the expected splitting and shift of phonon lines with increasing Mg content, thus proving the substitutional incorporation of Mg into metallic sites of the ZnTe lattice.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Molecular beam epitaxy growth and characterization of Hg1-xMgxTe
    Oehling, S
    Lunz, U
    Heinke, H
    Plahl, G
    Becker, CR
    Landwehr, G
    NARROW GAP SEMICONDUCTORS 1995, 1995, (144): : 245 - 249
  • [22] Red lasers grown by all-solid-source molecular beam epitaxy
    Savolainen, P
    Toivonen, M
    Pessa, M
    Corvini, P
    Jansen, M
    Nabiev, RF
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (05) : 425 - 429
  • [23] Morphological and electrical properties of InP grown by solid source molecular beam epitaxy
    Pi, Biao
    Shu, Yongchun
    Lin, Yaowang
    Sun, Jiaming
    Qu, Shengchun
    Yao, Jianghong
    Xing, Xiaodong
    Xu, Bo
    Shu, Qiang
    Wang, Zhanguo
    Xu, Jingjun
    JOURNAL OF CRYSTAL GROWTH, 2007, 299 (02) : 243 - 247
  • [24] High electron mobility InP grown by solid source molecular beam epitaxy
    Wang, Hongzhen
    Zhu, Yicheng
    Gu, Yi
    Chen, Pingping
    Wang, Wei
    Chen, Xiren
    Yang, Bo
    Li, Tao
    Shao, Xiumei
    Li, Xue
    Gong, Haimei
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 112 (112)
  • [25] InP and InGaAsP materials grown by solid-source molecular beam epitaxy
    Lu, JH
    Hao, ZB
    Ren, ZY
    Luo, Y
    FOURTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS, 2000, 4086 : 870 - 873
  • [26] Determination of the dielectric functions of MBE-grown Zn1-xMgxTe II-VI semiconductor alloys
    Franz, AJ
    Peiris, FC
    Liu, X
    Bindley, U
    Furdyna, JK
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (03): : 507 - 510
  • [27] Growth of Zn1-xMgxTe crystal by high temperature vertical Bridgman method
    Li, H.-Y. (lihuanyong@nwpu.edu.cn), 1600, Chinese Ceramic Society (43):
  • [28] Molecular Beam Epitaxy-Grown InGaN Nanomushrooms and Nanowires for White Light Source Applications
    Gasim, A.
    Ng, T. K.
    Cha, D. K.
    Bhattacharya, P.
    Ooi, B. S.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [29] Controlled Nucleation of GaN Nanowires Grown with Molecular Beam Epitaxy
    Bertness, Kris A.
    Sanders, Aric W.
    Rourke, Devin M.
    Harvey, Todd E.
    Roshko, Alexana
    Schlager, John B.
    Sanford, Norman A.
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) : 2911 - 2915
  • [30] Segmented nanowires of HgTe and Te grown by molecular beam epitaxy
    Haakenaasen, R.
    Selvig, E.
    Foss, S.
    Trosdahl-Iversen, L.
    Tafto, J.
    APPLIED PHYSICS LETTERS, 2008, 92 (13)