Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils

被引:14
|
作者
Philben, Michael [1 ]
Zheng, Jianqiu [2 ,6 ]
Bill, Markus [3 ]
Heikoop, Jeffrey M. [4 ]
Perkins, George [4 ]
Yang, Ziming [5 ]
Wullschleger, Stan D. [1 ]
Graham, David E. [2 ]
Gu, Baohua [1 ]
机构
[1] Oak Ridge Natl Lab, Environm Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
[3] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA
[4] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
[5] Oakland Univ, Dept Chem, Rochester, MI 48309 USA
[6] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA
来源
关键词
Anaerobic C mineralization; Microbial N limitation; Fermentation; Tundra; Methanogenesis; Stable isotope labeling; LITTER DECOMPOSITION; NITROGEN LIMITATION; MICROBIAL ACTIVITY; METHANE PRODUCTION; ALASKAN TUNDRA; AMINO-ACIDS; BOREAL MIRE; PERMAFROST; CARBON; TEMPERATURE;
D O I
10.1016/j.soilbio.2018.12.009
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Increasing nitrogen (N) availability in Arctic soils could stimulate the growth of both plants and microorganisms by relieving the constraints of nutrient limitation. It was hypothesized that organic N addition to anoxic tundra soil would increase CH4 production by stimulating the fermentation of labile substrates, which is considered the rate-limiting step in anaerobic C mineralization. We tested this hypothesis through both field and lab-based experiments. In the field experiment, we injected a solution of C-13- and N-15-labeled glutamate 35 cm below ground at a site near Nome on the Seward Peninsula, Alaska, and observed the resulting changes in porewater geochemistry and dissolved greenhouse gas concentrations. The concentration of free glutamate declined rapidly within hours of injection, and the N-15 label was recovered almost exclusively as dissolved organic N within 62 h. These results indicate rapid microbial assimilation of the added N and transformation into novel organic compounds. We observed increasing concentrations of dissolved CH4 and Fe(II), indicating rapid stimulation of methanogenesis and Fe(III) reduction. Low molecular weight organic acids such as acetate and propionate accumulated despite increasing consumption through anaerobic C mineralization. A laboratory soil column flow experiment using active layer soil collected from the same site further supported these findings. Glutamate recovery was low compared to a conservative bromide tracer, but concentrations of NO3- and NH4+ remained low, consistent with microbial uptake of the added N. Similar to the field experiment, we observed both increasing Fe(II) and organic acid concentrations. Together, these results support our hypothesis of increased fermentation in response to organic N addition and suggest that increasing N availability could accelerate CH4 production in tundra soils.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [1] Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska
    Herndon, Elizabeth M.
    Mann, Benjamin F.
    Chowdhury, Taniya Roy
    Yang, Ziming
    Wullschleger, Stan D.
    Graham, David
    Liang, Liyuan
    Gu, Baohua
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (11) : 2345 - 2359
  • [2] Geochemical drivers of organic matter decomposition in arctic tundra soils
    Elizabeth M. Herndon
    Ziming Yang
    John Bargar
    Noemie Janot
    Tom Z. Regier
    David E. Graham
    Stan D. Wullschleger
    Baohua Gu
    Liyuan Liang
    Biogeochemistry, 2015, 126 : 397 - 414
  • [3] Geochemical drivers of organic matter decomposition in arctic tundra soils
    Herndon, Elizabeth M.
    Yang, Ziming
    Bargar, John
    Janot, Noemie
    Regier, Tom Z.
    Graham, David E.
    Wullschleger, Stan D.
    Gu, Baohua
    Liang, Liyuan
    BIOGEOCHEMISTRY, 2015, 126 (03) : 397 - 414
  • [4] Bioavailability of organic matter in tundra soils
    Dai, XY
    Ping, CL
    Michaelson, GJ
    GLOBAL CLIMATE CHANGE AND COLD REGIONS ECOSYSTEMS, 2000, : 29 - 38
  • [5] Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed
    Philben, Michael
    Tas, Neslihan
    Chen, Hongmei
    Wullschleger, Stan D.
    Kholodov, Alexander
    Graham, David E.
    Gu, Baohua
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (07)
  • [6] ANAEROBIC TRANSFORMATIONS OF COMPLEX ORGANIC-COMPOUNDS IN SUBSURFACE SOILS
    PROCTOR, BL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 132 - ENVR
  • [7] Some observations on the decomposition of organic matter in soils
    Starkey, RL
    SOIL SCIENCE, 1924, 17 (04) : 293 - 314
  • [8] Protozoan stimulation of anaerobic microbial activity: enhancement of the rate of terminal decomposition of organic matter
    Biagini, GA
    Finlay, BJ
    Lloyd, D
    FEMS MICROBIOLOGY ECOLOGY, 1998, 27 (01) : 1 - 8
  • [9] ADDITION DECOMPOSITION AND ACCUMULATION OF ORGANIC MATTER IN FORESTS
    MINDERMA.G
    JOURNAL OF ECOLOGY, 1968, 56 (02) : 355 - +
  • [10] Decomposition of organic matter in organic horizons of forest soils in laboratory conditions
    Trofimov, SY
    Bottner, P
    Coateaux, MM
    EURASIAN SOIL SCIENCE, 1998, 31 (12) : 1349 - 1357