Method of adaptive artificial viscosity for solving the Navier-Stokes equations

被引:1
|
作者
Popov, I. V. [1 ,2 ]
Fryazinov, I. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Moscow 125047, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
基金
俄罗斯基础研究基金会;
关键词
difference scheme; Navier-Stokes equations; adaptive artificial viscosity; numerical method;
D O I
10.1134/S096554251508014X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier-Stokes equations in two dimensions. The Navier-Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
引用
收藏
页码:1324 / 1329
页数:6
相关论文
共 50 条
  • [31] A priori pivoting in solving the Navier-Stokes equations
    Wille, SO
    Loula, AFD
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (10): : 691 - 698
  • [32] ON A NUMERICAL SCHEME FOR SOLVING THE NAVIER-STOKES EQUATIONS
    KRIVTSOV, VM
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (03): : 172 - 178
  • [33] DIFFERENCE METHODS OF SOLVING NAVIER-STOKES EQUATIONS
    BRAILOVS.IY
    KUSKAVA, TV
    CHUDOV, LA
    INTERNATIONAL CHEMICAL ENGINEERING, 1970, 10 (02): : 228 - &
  • [34] An adaptive cartesian grid method for the incompressible navier-stokes equations
    Luo, Xilian
    Gu, Zhaolin
    Lei, Kangbin
    Kase, Kiwamu
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2009, 43 (11): : 11 - 17
  • [35] A distributed finite element method for solving the incompressible Navier-Stokes equations
    Dept Civil Eng, Stanford Univ, Terman Ctr, CA 94305-4020, United States
    Int J Numer Methods Eng, 24 (4243-4258):
  • [36] AN IMPLICIT, BIDIAGONAL NUMERICAL-METHOD FOR SOLVING THE NAVIER-STOKES EQUATIONS
    VONLAVANTE, E
    THOMPKINS, WT
    AIAA JOURNAL, 1983, 21 (06) : 828 - 833
  • [37] Iterative methods in solving Navier-Stokes equations by the boundary element method
    Hribersek, M
    Skerget, L
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (01) : 115 - 139
  • [38] The use of the global iterative method by pressure for solving Navier-Stokes equations
    Arkhangel'skaya, L.A.
    Skurin, L.I.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1994, (03): : 70 - 74
  • [39] ON A LOCAL MULTIGRID MESH REFINEMENT METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    CALTAGIRONE, JP
    KHADRA, K
    ANGOT, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1995, 320 (06): : 295 - 302
  • [40] Combined compact difference method for solving the incompressible Navier-Stokes equations
    Chen, Weijia
    Chen, J. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (10) : 1234 - 1256