Method of adaptive artificial viscosity for solving the Navier-Stokes equations

被引:1
|
作者
Popov, I. V. [1 ,2 ]
Fryazinov, I. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Moscow 125047, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
基金
俄罗斯基础研究基金会;
关键词
difference scheme; Navier-Stokes equations; adaptive artificial viscosity; numerical method;
D O I
10.1134/S096554251508014X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier-Stokes equations in two dimensions. The Navier-Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
引用
收藏
页码:1324 / 1329
页数:6
相关论文
共 50 条
  • [1] Method of adaptive artificial viscosity for solving the Navier–Stokes equations
    I. V. Popov
    I. V. Fryazinov
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1324 - 1329
  • [2] Numerical Methods with Adaptive Artificial Viscosity for Solving Navier−Stokes Equations
    Popov I.V.
    Mathematical Models and Computer Simulations, 2017, 9 (4) : 489 - 497
  • [3] Artificial neural network method for solving the Navier-Stokes equations
    Baymani, M.
    Effati, S.
    Niazmand, H.
    Kerayechian, A.
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (04): : 765 - 773
  • [4] AN UPWIND METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    SCHRODER, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T355 - T357
  • [5] METHOD FOR NUMERICAL SOLVING OF NAVIER-STOKES EQUATIONS
    JAMET, P
    LASCAUX, P
    RAVIART, PA
    NUMERISCHE MATHEMATIK, 1970, 16 (02) : 93 - &
  • [6] AN APPROXIMATION METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    TEMAM, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1968, 96 (02): : 115 - +
  • [7] Tensorial penalisation method for solving Navier-Stokes equations
    Caltagirone, JP
    Vincent, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (08): : 607 - 613
  • [8] Deterministic vortex method for solving the Navier-Stokes equations
    Wang, Dongyao
    Tong, Binggang
    Ma, Huiyang
    Acta Mechanica Sinica/Lixue Xuebao, 1994, 10 (02): : 121 - 128
  • [9] A multigrid method for solving the Navier-Stokes/Boussinesq equations
    Ben Cheikh, Nader
    Ben Beya, Brahim
    Lili, Taieb
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (08): : 671 - 681
  • [10] A vector projection method for solving the Navier-Stokes equations
    Caltagirone, JP
    Breil, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (11): : 1179 - 1184