IMPROVED DEEP LEARNING ARCHITECTURE FOR DEPTH ESTIMATION FROM SINGLE IMAGE

被引:6
|
作者
Abuowaida, Suhaila F. A. [1 ]
Chan, Huah Yong [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
关键词
Depth estimation; Single image; Deep learning; Encoder-decoder;
D O I
10.5455/jjcit.71-1593368945
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous benefits of depth estimation from the single image field on medicine, robot video games and 3D reality applications have garnered attention in recent years. Closely related to the third dimension of depth, this operation can be accomplished using human vision, though considered challenging due to the various issues when using computer vision. The differences in the geometry, the texture of the scene, the occlusion scene boundaries and the inherent ambiguity exist because of the minimal information that could be gathered from a single image. This paper, therefore, proposes a novel depth estimation in the field of architecture, which includes the stages that can manage depth estimation from a single RGB image. An encoder-decoder architecture has been proposed, based on the improvement yielded from DenseNet that extracted the map of an image using skip connection technique. This paper also takes on the reverse Huber loss function that essentially suits our architecture hand driven by the value distributions that are commonly present in depth maps. Experimental results have indicated that the depth estimation architecture that employs the NYU Depth v2 dataset has a better performance than the other state-of-the-art methods that tend to have fewer parameters and require fewer training time.
引用
收藏
页码:434 / 445
页数:12
相关论文
共 50 条
  • [21] Depth estimation and modeling of a tree from a single image
    Yan, Tao
    Chen, Yanyun
    Wu, Enhua
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (04): : 386 - 392
  • [22] Monocular Depth Estimation from a Single Infrared Image
    Han, Daechan
    Choi, Yukyung
    ELECTRONICS, 2022, 11 (11)
  • [23] Absolute Depth Estimation from a Single Defocused Image
    Lin, Jingyu
    Ji, Xiangyang
    Xu, Wenli
    Dai, Qionghai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (11) : 4545 - 4550
  • [24] Depth estimation and modeling of a tree from a single image
    Yan, T
    Wu, EH
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 860 - 866
  • [25] Two-Stage Deep Regression Enhanced Depth Estimation From a Single RGB Image
    Sun, Jianyuan
    Wang, Zidong
    Yu, Hui
    Zhang, Shu
    Dong, Junyu
    Gao, Pengxiang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 719 - 727
  • [26] Deep Learning-based Depth Estimation from a Synthetic Endoscopy Image Training Set
    Mahmood, Faisal
    Durr, Nicholas J.
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [27] Based on CWGAN Deep Learning Architecture to Predict Chronic Wound Depth Image
    Chin, Chiun-Li
    Sun, Tzu-Yu
    Lin, Jun-Cheng
    Li, Chieh-Yu
    Lai, Yan-Ming
    Chen, Ting
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 275 - 276
  • [28] REINFORCED DEPTH-AWARE DEEP LEARNING FOR SINGLE IMAGE DEHAZING
    Guo, Tiantong
    Monga, Vishal
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8891 - 8895
  • [29] Food Volume Estimation Based on Deep Learning View Synthesis from a Single Depth Map
    Lo, Frank P. -W.
    Sun, Yingnan
    Qiu, Jianing
    Lo, Benny
    NUTRIENTS, 2018, 10 (12)
  • [30] Single Image Depth Estimation Trained via Depth from Defocus Cues
    Gur, Shir
    Wolf, Lior
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7675 - 7684