Splitting positive definite mixed element method for viscoelasticity wave equation

被引:8
|
作者
Liu, Yang [1 ]
Li, Hong [1 ]
Gao, Wei [1 ]
He, Siriguleng [1 ]
Wang, Jinfeng [2 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Inner Mongolia Finance & Econ Coll, Sch Math & Stat, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscoelasticity wave equation; transformation; splitting positive definite system; mixed finite element method; error estimate; POROUS-MEDIA; MISCIBLE DISPLACEMENT; HYPERBOLIC-EQUATIONS; FLOW;
D O I
10.1007/s11464-012-0183-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.
引用
收藏
页码:725 / 742
页数:18
相关论文
共 50 条
  • [11] Superconvergence Analysis of Splitting Positive Definite Nonconforming Mixed Finite Element Method for Pseudo-hyperbolic Equations
    Shi, Dong-yang
    Tang, Qi-li
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 843 - 854
  • [12] Superconvergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations
    Dong-yang Shi
    Qi-li Tang
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 843 - 854
  • [13] Superconvergence of splitting positive definite mixed finite element for parabolic optimal control problems
    Tang, Yuelong
    Hua, Yuchun
    APPLICABLE ANALYSIS, 2018, 97 (16) : 2778 - 2793
  • [14] A new splitting mixed finite element analysis of the viscoelastic wave equation
    Zhang, Jiansong
    Gao, Liping
    Kong, Yuanshuo
    Wang, Mei
    Yang, Guanqi
    NUMERICAL ALGORITHMS, 2024, : 229 - 249
  • [15] CRANK-NICOLSON SPLITTING POSITIVE DEFINITE MIXED ELEMENT DISCRETIZATION OF PARABOLIC CONTROL PROBLEMS
    Tang, Yuelong
    Hua, Yuchun
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [16] Two splitting positive definite mixed finite element methods for parabolic integro-differential equations
    Guo, Hui
    Zhang, Jiansong
    Fu, Hongfei
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 11255 - 11268
  • [17] H1 - Galerkin Mixed Finite Element Method for The Viscoelasticity Type Equation
    Che, Haitao
    Li, Meixia
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 537 - 540
  • [18] A New Positive Definite Expanded Mixed Finite Element Method for Parabolic Integrodifferential Equations
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    Gao, Wei
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [19] GLOBAL SUPERCONVERGENCE FOR A MIXED FINITE ELEMENT METHOD FOR THE WAVE EQUATION
    CHEN Yanping(Department of Mathematics
    Systems Science and Mathematical Sciences, 1999, (02) : 159 - 165
  • [20] Mixed finite element method for a strongly damped wave equation
    Pani, AK
    Yuan, JY
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (02) : 105 - 119