Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

被引:1575
|
作者
Wu, Changsheng [1 ]
Wang, Aurelia C. [1 ]
Ding, Wenbo [1 ]
Guo, Hengyu [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
blue energy; energy harvesting; self-powered; the energy for the new era; triboelectric nanogenerators; WATER-WAVE ENERGY; KEYSTROKE DYNAMICS; BIOMECHANICAL ENERGY; SURFACE-CHARGE; SYSTEM DRIVEN; POWER; CONTACT; ELECTRODE; PERFORMANCE; VIBRATION;
D O I
10.1002/aenm.201802906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self-powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [22] A compact model for the zigzag triboelectric nanogenerator energy harvester
    Refaei, Akram
    Seleem, Mohamed
    Tharwat, Abdelrahman
    Mostafa, Hassan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 1645 - 1660
  • [23] Oscillating column and triboelectric nanogenerator for ocean wave energy
    S. Reilly
    Y. W. Kwon
    Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3 : 23 - 32
  • [24] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [25] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [26] Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy
    Ting Quan
    Yingchun Wu
    Ya Yang
    Nano Research, 2015, 8 : 3272 - 3280
  • [27] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):
  • [28] Photoinduced triboelectric polarity reversal and enhancement of a new metal/semiconductor triboelectric nanogenerator
    Han, Juanjuan
    Yang, Xiude
    Liao, Liping
    Zhou, Guangdong
    Wang, Gang
    Xu, Cunyun
    Hu, Wei
    Debora, Mbeng Elisabeth Reine
    Song, Qunliang
    NANO ENERGY, 2019, 58 : 331 - 337
  • [29] Sandwich as a triboelectric nanogenerator
    Jiao, Jingyi
    Lu, Qixin
    Wang, Zhonglin
    Qin, Yong
    Cao, Xia
    NANO ENERGY, 2021, 79
  • [30] A Wireless Triboelectric Nanogenerator
    Mallineni, Sai Sunil Kumar
    Dong, Yongchang
    Behlow, Herbert
    Rao, Apparao M.
    Podila, Ramakrishna
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)