Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

被引:1575
|
作者
Wu, Changsheng [1 ]
Wang, Aurelia C. [1 ]
Ding, Wenbo [1 ]
Guo, Hengyu [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
blue energy; energy harvesting; self-powered; the energy for the new era; triboelectric nanogenerators; WATER-WAVE ENERGY; KEYSTROKE DYNAMICS; BIOMECHANICAL ENERGY; SURFACE-CHARGE; SYSTEM DRIVEN; POWER; CONTACT; ELECTRODE; PERFORMANCE; VIBRATION;
D O I
10.1002/aenm.201802906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self-powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy
    Chen, Baodong
    Wang, Zhong Lin
    SMALL, 2022, 18 (43)
  • [2] Triboelectric nanogenerator - a new energy technology using organic materials
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [3] Embroidery Triboelectric Nanogenerator for Energy Harvesting
    Tahir, Hasan Riaz
    Malengier, Benny
    Sujan, Sanaul
    Van Langenhove, Lieva
    SENSORS, 2024, 24 (12)
  • [4] A New Star in Energy Utilization: Solid-Liquid Triboelectric Nanogenerator
    Gao, Qi
    Zeng, Qunfeng
    NANO, 2024, 19 (07)
  • [5] Triboelectric Nanogenerator Scavenging Sliding Motion Energy
    Ali, Mehran
    Khan, Saeed Ahmed
    Rahimoon, Abdul Qadir
    Hussain, Fida
    Abro, Ahsanullah
    Shamsuddin
    Hussain, Izhar
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), 2019,
  • [6] Gridding Triboelectric Nanogenerator for Raindrop Energy Harvesting
    Cheng, Bolang
    Niu, Shaoshuai
    Xu, Qi
    Wen, Juan
    Bai, Suo
    Qin, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 59975 - 59982
  • [7] Gridding Triboelectric Nanogenerator for Raindrop Energy Harvesting
    Cheng, Bolang
    Niu, Shaoshuai
    Xu, Qi
    Wen, Juan
    Bai, Suo
    Qin, Yong
    ACS Applied Materials and Interfaces, 2021, 13 (50): : 59975 - 59982
  • [8] Triboelectric Nanogenerator: A Hope to Collect Blue Energy
    Wang, Wanli
    Feng, Xiao
    Wang, Kai
    Li, Liwei
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC 2019), 2019, : 157 - 161
  • [9] Effective energy storage from a triboelectric nanogenerator
    Yunlong Zi
    Jie Wang
    Sihong Wang
    Shengming Li
    Zhen Wen
    Hengyu Guo
    Zhong Lin Wang
    Nature Communications, 7
  • [10] Effective energy storage from a triboelectric nanogenerator
    Zi, Yunlong
    Wang, Jie
    Wang, Sihong
    Li, Shengming
    Wen, Zhen
    Guo, Hengyu
    Wang, Zhong Lin
    NATURE COMMUNICATIONS, 2016, 7