An N-channel generalization of the network model of Chalker and Coddington is considered. The model for N = 1 is known to describe the critical behavior at the plateau transition in systems exhibiting the integer quantum Hall effect. Using a recently discovered equality of integrals, the network model is transformed into a lattice field theory defined over Efetov's sigma model space with unitary symmetry. The transformation is exact for all N, no saddle-point approximation is made, and no massive modes have to be eliminated. The naive continuum limit of the lattice theory is shown to be a supersymmetric version of Pruisken's nonlinear a model with couplings sigma(xx)=N/4 and sigma(xy)=N/2 at the symmetric point. It follows that the model for N = 2, which describes a spin degenerate Landau level and the random flux problem, is noncritical. On the basis of symmetry considerations and inspection of the Hamiltonian limit, a modified network model is formulated, which still lies in the quantum Hall universality class. The prospects for deformation to a Yang-Baxter integrable vertex model are briefly discussed. (C) 1997 American Institute of Physics.