Orthogonal decompositions and canonical embeddings of multilinear alternating forms

被引:6
|
作者
Hora, J
机构
[1] Nučice 252 16
来源
LINEAR & MULTILINEAR ALGEBRA | 2004年 / 52卷 / 02期
关键词
k-linear alternating form; orthogonal decomposition; efficiency; complexity;
D O I
10.1080/03081080310001606517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given k-linear forms f(i) : V-i(k) ---> F, 1 less than or equal to i less than or equal to m, define a k-linear form f = f(1) circle plus ... circle plus f(m) : (V-1 circle plus ... circle plus V-m)(k) --> F by f(u(1) ,..., u(k)) = Sigma(i)(i)(f)(P-i(u(1)),..., P-i(u(k))), where P-i : V-1 circle plus ... circle plus V-m --> V-i are projections. If a k-linear form f : V-k --> F can be expressed as above call the system of subspaces V-1 ,..., V-m an orthogonal decomposition (with respect to f). We show that for k greater than or equal to 3 such a decomposition is unique if in is maximal possible. Furthermore we prove that a nondegenerate alternating form f : V-k --> F can be always extended to h = h(1) circle plus ... circle plus h(c), where h(i) : (V-i)(k) --> F are nonzero alternating, and dim V-i = k, l less than or equal to i less than or equal to c.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [41] ORTHOGONAL DECOMPOSITIONS OF TENSOR SPACES
    PIERCE, S
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1970, B 74 (01): : 41 - +
  • [42] SYSTOLIC NETWORKS FOR ORTHOGONAL DECOMPOSITIONS
    HELLER, DE
    IPSEN, ICF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02): : 261 - 269
  • [43] Orthogonal decompositions of complete digraphs
    Hartmann, S
    GRAPHS AND COMBINATORICS, 2002, 18 (02) : 285 - 302
  • [44] Orthogonal decompositions and twisted isometries
    Rakshit, Narayan
    Sarkar, Jaydeb
    Suryawanshi, Mansi
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (08)
  • [45] On stable orthogonal decompositions of idempotents
    Fan, Y
    Külshammer, B
    JOURNAL OF ALGEBRA, 1999, 217 (02) : 711 - 735
  • [46] A CLOSED-FORM SOLUTION FOR MULTILINEAR PARAFAC DECOMPOSITIONS
    Roemer, Florian
    Haardt, Martin
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 488 - 492
  • [47] The Orlicz inequality for multilinear forms
    Nunez-Alarcon, Daniel
    Pellegrino, Daniel
    Serrano-Rodriguez, Diana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [48] ON THE CLOSENESS OF DISTRIBUTIONS OF MULTILINEAR FORMS
    BASALIKAS, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1992, 37 (03) : 405 - 414
  • [49] On orthogonal symmetric chain decompositions
    Daeubel, Karl
    Jaeger, Sven
    Muetze, Torsten
    Scheucher, Manfred
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [50] Multilinear forms and graded algebras
    Dubois-Violette, Michel
    JOURNAL OF ALGEBRA, 2007, 317 (01) : 198 - 225