Stability analysis for a size-structured model of species in a space-limited habitat

被引:0
|
作者
He, Ze-Rong [1 ]
Xie, Qiang-Jun [1 ]
Wang, Hai-Tao [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Operat Res & Cybernet, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Space-limitation; size-dependence; spectrum; reproduction number; stability; POPULATION-DYNAMICS;
D O I
10.1142/S1793524516500935
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the stability of steady states of a size-and stage-structured population model, which is a hybrid system of ordinary and partial differential equations with global integral feedbacks. After the formulation of a criterion by spectrum method, we derive conditions for global stability of the trivial state and local stability of the positive equilibrium via the basic reproduction rate. Furthermore, some examples and simulations are presented to illustrate the obtained results.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Asymptotic Behaviors of a Size-structured Population Model
    Fu, Xian-long
    Wu, Qiong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (04): : 1025 - 1042
  • [32] The Principle of Linearized Stability for Size-Structured Population Models
    El-Doma, M.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2011, 6 (02): : 620 - 641
  • [33] Asymptotic behaviors of a size-structured population model
    Xian-long Fu
    Qiong Wu
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 1025 - 1042
  • [34] SENSITIVITY EQUATIONS FOR A SIZE-STRUCTURED POPULATION MODEL
    Banks, H. T.
    Ernstberger, Stacey L.
    Hu, Shuhua
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (04) : 627 - 660
  • [35] On the inverse problem for a size-structured population model
    Perthame, Benoit
    Zubelli, Jorge P.
    INVERSE PROBLEMS, 2007, 23 (03) : 1037 - 1052
  • [36] Space-Limited Mitosis in the Glazier–Graner–Hogeweg Model
    Brodie A. J. Lawson
    Graeme J. Pettet
    Bulletin of Mathematical Biology, 2017, 79 : 1 - 20
  • [37] ANALYSIS OF DIFFUSIVE SIZE-STRUCTURED POPULATION MODEL AND OPTIMAL BIRTH CONTROL
    Kumar, Manoj
    Abbas, Syed
    Sakthivel, Rathinasamy
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 423 - 445
  • [38] Asymptotic Behaviors of a Size-structured Population Model
    Xian-long FU
    Qiong WU
    ActaMathematicaeApplicataeSinica, 2017, 33 (04) : 1025 - 1042
  • [39] One model of size-structured population dynamics
    M. S. Nikol’skii
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 128 - 133
  • [40] One model of size-structured population dynamics
    Nikol'skii, M. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 175 - 180