Applying kriging proxies for Markov chain Monte Carlo in reservoir simulation

被引:6
|
作者
Fursov, Ilya [1 ]
Christie, Mike [1 ]
Lord, Gabriel [1 ]
机构
[1] Heriot Watt Univ, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo; Uncertainty quantification; Gaussian process; Proxy model; Reservoir simulation; SEQUENTIAL DESIGN; COMPUTER; UNCERTAINTY; EMULATION;
D O I
10.1007/s10596-020-09968-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One way to quantify the uncertainty in Bayesian inverse problems arising in the engineering domain is to generate samples from the posterior distribution using Markov chain Monte Carlo (MCMC) algorithms. The basic MCMC methods tend to explore the parameter space slowly, which makes them inefficient for practical problems. On the other hand, enhanced MCMC approaches, like Hamiltonian Monte Carlo (HMC), require the gradients from the physical problem simulator, which are often not available. In this case, a feasible option is to use the gradient approximations provided by the surrogate (proxy) models built on the simulator output. In this paper, we consider proxy-aided HMC employing the Gaussian process (kriging) emulator. We overview in detail the different aspects of kriging proxies, the underlying principles of the HMC sampler and its interaction with the proxy model. The proxy-aided HMC algorithm is thoroughly tested in different settings, and applied to three case studies-one toy problem, and two synthetic reservoir simulation models. We address the question of how the sampler performance is affected by the increase of the problem dimension, the use of the gradients in proxy training, the use of proxy-for-the-data and the different approaches to the design points selection. It turns out that applying the proxy model with HMC sampler may be beneficial for relatively small physical models, with around 20 unknown parameters. Such a sampler is shown to outperform both the basic Random Walk Metropolis algorithm, and the HMC algorithm fed by the exact simulator gradients.
引用
收藏
页码:1725 / 1746
页数:22
相关论文
共 50 条
  • [21] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [22] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191
  • [23] Evolutionary Markov chain Monte Carlo
    Drugan, MM
    Thierens, D
    ARTIFICIAL EVOLUTION, 2004, 2936 : 63 - 76
  • [24] Markov Chain Monte Carlo in Practice
    Jones, Galin L.
    Qin, Qian
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 557 - 578
  • [25] Structured Markov chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 217 - 234
  • [26] Coreset Markov chain Monte Carlo
    Chen, Naitong
    Campbell, Trevor
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [27] Multilevel Markov Chain Monte Carlo
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM REVIEW, 2019, 61 (03) : 509 - 545
  • [28] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [29] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292
  • [30] Parallel Markov chain Monte Carlo simulation by pre-fetching
    Brockwell, AE
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) : 246 - 261