Deep Reinforcement Learning Assisted Federated Learning Algorithm for Data Management of IIoT

被引:137
|
作者
Zhang, Peiying [1 ]
Wang, Chao [1 ]
Jiang, Chunxiao [2 ,3 ]
Han, Zhu [4 ,5 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[2] Tsinghua Univ, Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Space Ctr, Beijing 100084, Peoples R China
[4] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77440 USA
[5] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Informatics; Data training; deep reinforcement learning (DRL); federated learning (FL); industrial Internet of Things (IIoT); IIoT equipment; INDUSTRIAL INTERNET; IOT;
D O I
10.1109/TII.2021.3064351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment. According to the different requirement of end users, these data usually have high heterogeneity and privacy, while most of users are reluctant to expose them to the public view. How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue, such that it has attracted extensive attention from academia and industry. As a new machine learning paradigm, federated learning (FL) has great advantages in training heterogeneous and private data. This article studies the FL technology applications to manage IIoT equipment data in wireless network environments. In order to increase the model aggregation rate and reduce communication costs, we apply deep reinforcement learning (DRL) to IIoT equipment selection process, specifically to select those IIoT equipment nodes with accurate models. Therefore, we propose a FL algorithm assisted by DRL, which can take into account the privacy and efficiency of data training of IIoT equipment. By analyzing the data characteristics of IIoT equipments, we use MNIST, fashion MNIST, and CIFAR-10 datasets to represent the data generated by IIoT. During the experiment, we employ the deep neural network model to train the data, and experimental results show that the accuracy can reach more than 97%, which corroborates the effectiveness of the proposed algorithm.
引用
收藏
页码:8475 / 8484
页数:10
相关论文
共 50 条
  • [21] FedRLChain: Secure Federated Deep Reinforcement Learning With Blockchain
    Chowdhury, Sujit
    Mukherjee, Arnab
    Halder, Raju
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (06) : 3865 - 3878
  • [22] Manipulator Control using Federated Deep Reinforcement Learning
    Shivkumar, S.
    Kumaar, A. A. Nippun
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [23] Optimized Data Sampling and Energy Consumption in IIoT: A Federated Learning Approach
    Hsu, Yung-Lin
    Liu, Chen-Feng
    Wei, Hung-Yu
    Bennis, Mehdi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 7915 - 7931
  • [24] Joint Data Caching and Computation Offloading in UAV-Assisted Internet of Vehicles via Federated Deep Reinforcement Learning
    Huang, Jiwei
    Zhang, Man
    Wan, Jiangyuan
    Chen, Ying
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17644 - 17656
  • [25] Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
    Wang, Hao
    Kaplan, Zakhary
    Niu, Di
    Li, Baochun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1698 - 1707
  • [26] Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
    Wang, Yali
    Chen, Jiachao
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [27] Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection
    Rjoub, Gaith
    Wahab, Omar Abdel
    Bentahar, Jamal
    Cohen, Robin
    Bataineh, Ahmed Saleh
    INFORMATION SYSTEMS FRONTIERS, 2024, 26 (04) : 1261 - 1278
  • [28] A Deep Reinforcement Learning Approach for Federated Learning Optimization with UAV Trajectory Planning
    Zhang, Chunyu
    Liu, Yiming
    Zhang, Zhi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [29] Joint Device Participation, Dataset Management, and Resource Allocation in Wireless Federated Learning via Deep Reinforcement Learning
    Chen, Jinlian
    Zhang, Jun
    Zhao, Nan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4505 - 4510
  • [30] Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning
    Dai, Yueyue
    Yang, Huijiong
    Yang, Huiran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 179 - 184