ASYMPTOTIC ESTIMATES FOR APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

被引:28
|
作者
Navas, Luis M. [1 ]
Ruiz, Francisco J. [2 ]
Varona, Juan L. [3 ]
机构
[1] Univ Salamanca, Dept Math, E-37008 Salamanca, Spain
[2] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[3] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
Apostol-Bernoulli polynomials; Apostol-Euler polynomials; Fourier series; asymptotic estimates;
D O I
10.1090/S0025-5718-2012-02568-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the asymptotic behavior of the Apostol-Bernoulli polynomials B-n (x; lambda) in detail. The starting point is their Fourier series on [0, 1] which, it is shown, remains valid as an asymptotic expansion over compact subsets of the complex plane. This is used to determine explicit estimates on the constants in the approximation, and also to analyze oscillatory phenomena which arise in certain cases. These results are transferred to the Apostol-Euler polynomials epsilon(n) (x; lambda) via a simple relation linking them to the Apostol-Bernoulli polynomials.
引用
收藏
页码:1707 / 1722
页数:16
相关论文
共 50 条
  • [41] General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials
    He, Yuan
    Kim, Taekyun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4780 - 4797
  • [42] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Ozarslan, Mehmet Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [43] 几个广义Apostol-Bernoulli、Apostol-Euler多项式之间的关系式
    韩艺兵
    文生兰
    河南科学, 2015, 33 (01) : 10 - 12
  • [44] Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, H. M.
    Acikgoz, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 31 - 41
  • [45] A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials
    El-Desouky, B. S.
    Gomaa, R. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 695 - 702
  • [46] An extension of generalized Apostol-Euler polynomials
    Si Chen
    Yi Cai
    Qiu-Ming Luo
    Advances in Difference Equations, 2013
  • [47] An extension of generalized Apostol-Euler polynomials
    Chen, Si
    Cai, Yi
    Luo, Qiu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [48] A New Formula of Products of the Apostol–Bernoulli and Apostol–Euler Polynomials
    Yuan He
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1307 - 1318
  • [49] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2013
  • [50] Two closed forms for the Apostol-Bernoulli polynomials
    Hu, Su
    Kim, Min-Soo
    RAMANUJAN JOURNAL, 2018, 46 (01): : 103 - 117