Semantic labeling of lidar point clouds for UAV applications

被引:5
|
作者
Axelsson, Maria [1 ]
Holmberg, Max [1 ]
Serra, Sabina [1 ]
Ovren, Hannes [1 ]
Tulldahl, Michael [1 ]
机构
[1] Swedish Def Res Agcy FOI, Linkoping, Sweden
关键词
D O I
10.1109/CVPRW53098.2021.00487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Small Unmanned Aerial Vehicle (UAV) platforms equipped with compact laser scanners provides a low-cost option for many applications, including surveillance, mapping, and reconnaissance. For these applications, semantic segmentation or semantic labeling of each point in the lidar point cloud, is important for scene-understanding. In this work, we evaluate methods for semantic segmentation of three-dimensional (3D) point clouds of outdoor scenes measured with a laser scanner mounted on a small UAV. We compare the performance of four different semantic segmentation methods, which are all applied in a scan-byscan fashion, on semi-sparse laser data. The best method achieves 95.3% on the three classes ground, vegetation, and vehicle in terms of mean intersection over union (mIoU) on a previously unseen scene from a different geographical area. The results demonstrate that it is possible to achieve good performance on the semantic segmentation task on data measured using a combination of a small UAV and a compact laser scanner.
引用
收藏
页码:4309 / 4316
页数:8
相关论文
共 50 条
  • [41] Multigranularity Semantic Labeling of Point Clouds for the Measurement of the Rail Tanker Component With Structure Modeling
    Qi, Chao
    Yin, Jianqin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [42] Comparing the accuracies of sUAV-SFM and UAV-LiDAR point clouds for topographic measurements
    Song Ye
    Fei Yan
    Qiuwen Zhang
    Dingtao Shen
    Arabian Journal of Geosciences, 2022, 15 (5)
  • [43] Semantic Labeling of 3D Point Clouds with Object Affordance for Robot Manipulation
    Kim, David Inkyu
    Sukhatme, Gaurav S.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5578 - 5584
  • [44] A deep learning network for semantic labeling of large-scale urban point clouds
    Yang B.
    Han X.
    Dong Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1059 - 1067
  • [45] AN EXPLORATION OF PROPERTIES OF POINT CLOUDS OF INDIVIDUAL TREES EXTRACTED FROM A LARGER UAV LIDAR SURVEY
    Dubrovin, Ivan
    Fortin, Clement
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4503 - 4506
  • [46] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [47] CLASSIFICATION OF MULTISPECTRAL LIDAR POINT CLOUDS
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2756 - 2759
  • [48] Positioning and perception in LIDAR point clouds
    Benedek, Csaba
    Majdik, Andras
    Nagy, Balazs
    Rozsa, Zoltan
    Sziranyi, Tamas
    DIGITAL SIGNAL PROCESSING, 2021, 119
  • [49] Comparing Lidar and Photogrammetric Point Clouds
    Schwind, Michael
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2018, 32 (01): : 25 - 27
  • [50] A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots
    Wang, Fan
    Wang, Jiawei
    Wu, Yun
    Xue, Zhijie
    Tan, Xin
    Yang, Yueyuan
    Lin, Simei
    FORESTS, 2024, 15 (12):