Real-Time Driving Behavior Identification Based on Multi-Source Data Fusion

被引:10
|
作者
Ma, Yongfeng [1 ]
Xie, Zhuopeng [1 ]
Chen, Shuyan [1 ]
Wu, Ying [1 ]
Qiao, Fengxiang [2 ]
机构
[1] Southeast Univ, Sch Transportat, Jiangsu Key Lab Urban ITS, Nanjing 211189, Peoples R China
[2] Texas Southern Univ, Innovat Transportat Res Inst, Houston, TX 77004 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
real-time driving behavior identification; stacked long short-term memory network; data fusion; time window; online car-hailing; driver expression data; FEATURE-EXTRACTION; DRIVER BEHAVIOR;
D O I
10.3390/ijerph19010348
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Real-time driving behavior identification has a wide range of applications in monitoring driver states and predicting driving risks. In contrast to the traditional approaches that were mostly based on a single data source with poor identification capabilities, this paper innovatively integrates driver expression into driving behavior identification. First, 12-day online car-hailing driving data were collected in a non-intrusive manner. Then, with vehicle kinematic data and driver expression data as inputs, a stacked Long Short-Term Memory (S-LSTM) network was constructed to identify five kinds of driving behaviors, namely, lane keeping, acceleration, deceleration, turning, and lane changing. The Artificial Neural Network (ANN) and XGBoost algorithms were also employed as a comparison. Additionally, ten sliding time windows of different lengths were introduced to generate driving behavior identification samples. The results show that, using all sources of data yields better results than using the kinematic data only, with the average F1 value improved by 0.041, while the S-LSTM algorithm is better than the ANN and XGBoost algorithms. Furthermore, the optimal time window length is 3.5 s, with an average F1 of 0.877. This study provides an effective method for real-time driving behavior identification, and thereby supports the driving pattern analysis and Advanced Driving Assistance System.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Research on driving proneness in car-following behaviours based on multi-source real driving data
    Li, Shiwu
    Zhao, Shishu
    Guo, Mengzhu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (12) : 2974 - 2987
  • [22] Application of the Multi-Source Data Fusion Algorithm in the Hail Identification
    Zhu, Yonghua
    Wang, Yongqing
    Hu, Zhiqun
    Xu, Fansen
    Liu, Renqiang
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2022, 58 (03) : 435 - 450
  • [23] Application of the Multi-Source Data Fusion Algorithm in the Hail Identification
    Yonghua Zhu
    Yongqing Wang
    Zhiqun Hu
    Fansen Xu
    Renqiang Liu
    Asia-Pacific Journal of Atmospheric Sciences, 2022, 58 : 435 - 450
  • [24] Travel time prediction of road network based on multi-source data fusion
    Liu, Wenting
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 850 - 854
  • [25] Spark-based Anomaly Detection Over Multi-source VMware Performance Data In Real-time
    Solaimani, Mohiuddin
    Iftekhar, Mohammed
    Khan, Latifur
    Thuraisingham, Bhavani
    Ingram, Joey Burton
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CYBER SECURITY (CICS), 2014, : 66 - 73
  • [26] Real-time Estimation of Urban Rail Transit Passenger Flow Status Based on Multi-source Data
    Tao, Zhengping
    Tang, Jinjin
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [27] Multi-source data fusion based on iterative deformation
    Xu, Zhi
    Dai, Ning
    Zhang, Changdong
    Song, Yinglong
    Sun, Yuchun
    Yuan, Fusong
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014, 50 (07): : 191 - 198
  • [28] Multi-source Information Fusion Based on Data Driven
    Zhang Xin
    Yang Li
    Zhang Yan
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 121 - 126
  • [29] Travel time prediction of multi-source historical data fusion
    Liu Wen-ting
    Wang Zhi-jian
    Yan Qin
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 777 - 781
  • [30] Research on Fatigue Driving Assessment Based on Multi-source Information Fusion
    Fang Bin
    Yang Jiangyong
    PROCEEDINGS OF 2017 9TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2017, : 385 - 390