Catalytic hydrogenation and dehydrogenation of N-ethylindole as a new heteroaromatic liquid organic hydrogen carrier

被引:73
|
作者
Dong, Yuan [1 ]
Yang, Ming [1 ]
Yang, Zihua [1 ]
Ke, Hanzhong [1 ]
Cheng, Hansong [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Sustainable Energy Lab, Wuhan 430074, Peoples R China
关键词
N-ethylindole; Catalytic hydrogenation; Catalytic dehydrogenation; Hydrogen purity; SUPPORTED RUTHENIUM; ENERGY-STORAGE; RU CATALYST; ETHYLCARBAZOLE; KINETICS; CYCLOHEXANE; HYDROGENATION/DEHYDROGENATION; 9-ETHYLCARBAZOLE; PERFORMANCE; RELEASE;
D O I
10.1016/j.ijhydene.2015.05.196
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogenation of N-ethylindole was investigated over a 5 wt% Ru/Al2O3 catalyst in the temperature range of 160-190 degrees C at 9 MPa. The process was found to undergo the sequential steps of N-ethylindole -> 2H-N-ethylindole -> 4H-N-ethylindole -> 8H-N-ethylindole with rapid consumption of all intermediate species. The reverse process, dehydrogenation of octahydro-N-ethylindole, was subsequently conducted for tests over a 5 wt % Pd/Al2O3 catalyst in the same temperature range. Full dehydrogenation can be achieved with a moderate reaction rate. The released H-2 gas was found to be of a high purity. Our results indicate that N-ethylindole is a promising new member of liquid organic hydrogen carrier family. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10918 / 10922
页数:5
相关论文
共 50 条
  • [21] Catalytic Reactors for Dehydrogenation of Liquid Organic Hydrogen Carriers
    I. A. Makaryan
    I. V. Sedov
    Russian Journal of Applied Chemistry, 2021, 94 : 1011 - 1021
  • [22] Catalytic Reactors for Dehydrogenation of Liquid Organic Hydrogen Carriers
    Makaryan, I. A.
    Sedov, I., V
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2021, 94 (08) : 1011 - 1021
  • [23] Hydrogenation of aromatic and heteroaromatic compounds - a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems
    Jorschick, H.
    Preuster, P.
    Boesmann, A.
    Wasserscheid, P.
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (05) : 1311 - 1346
  • [24] Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps
    Catizzone, Enrico
    Freda, Cesare
    Braccio, Giacobbe
    Frusteri, Francesco
    Bonura, Giuseppe
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 55 - 77
  • [25] Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps
    Enrico Catizzone
    Cesare Freda
    Giacobbe Braccio
    Francesco Frusteri
    Giuseppe Bonura
    Journal of Energy Chemistry, 2021, 58 (07) : 55 - 77
  • [26] Investigation of hydrogenation of Dibenzyltoluene as liquid organic hydrogen carrier
    Ali, Ahsan
    Kumar, G. Udaya
    Lee, Hee Joon
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 1123 - 1127
  • [27] Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports
    Feng, Zhaolu
    Chen, Xiaomin
    Bai, Xuefeng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (29) : 36172 - 36185
  • [28] Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports
    Zhaolu Feng
    Xiaomin Chen
    Xuefeng Bai
    Environmental Science and Pollution Research, 2020, 27 : 36172 - 36185
  • [29] Optimization of Liquid Organic Hydrogen Carrier (LOHC) dehydrogenation system
    Rao, Nihal
    Lele, Ashish K.
    Patwardhan, Ashwin W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (66) : 28530 - 28547
  • [30] A Perspective Review on N-Heterocycles as Liquid Organic Hydrogen Carriers and Their Hydrogenation/Dehydrogenation Catalysts
    Li, Yang
    Guo, Xinliang
    Zhang, Shenghan
    He, Yunhua
    ENERGY & FUELS, 2024, 38 (14) : 12447 - 12471