Approaches to thermal isolation with thin-film superlattice thermoelectric materials

被引:0
|
作者
Addepalli, P
Reddy, AJ
Venkatasubramanian, R
机构
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose the use of hetero-structured high ZT materials in thermally isolated thermoelectric couples for the purpose of improving overall device efficiency. Use of high ZT material incorporated in convective flow devices will yield a two-fold improvement in COP over isothermal TE devices. The analytical approach presented in this paper requires optimization of TE element aspect ratio according to available DeltaT at location in the device. We discuss the limitations on thermoelectric element characteristics and geometry to achieve high COP. We also utilize moderate temperature differentials to meet the target of high COP. If space requirements are restrictive, or materials processing is limited, the materials described herein provide the unique ability to alter Seebeck coefficient, thermal conductivity, and electrical such that the required aspect ratio is suitable. Improvement in Seebeck coefficient and electrical resistivity independently increase COP by as much as 25% or more when applied to thermally isolated device considered.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [21] Thin-film thermoelectric cooling
    I. M. Lashkevich
    O. Angeles Fragoso
    Yu. G. Gurevich
    Technical Physics, 2009, 54 : 289 - 297
  • [22] Necessary conditions for superior thermoelectric power of Si/Au artificial superlattice thin-film
    Okamoto, Yoichi
    Watanabe, Shin
    Miyazaki, Hisashi
    Morimoto, Jun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (03)
  • [23] THERMAL CHARACTERIZATION OF THIN-FILM AND BULK DIAMOND MATERIALS
    PRYOR, RW
    THOMAS, RL
    KUO, PK
    WEI, L
    CARBON, 1990, 28 (06) : 747 - 747
  • [24] The Surface Preparation of Thermoelectric Materials for Deposition of Thin-Film Contact Systems
    M. Yu. Shtern
    I. S. Karavaev
    Y. I. Shtern
    A. O. Kozlov
    M. S. Rogachev
    Semiconductors, 2019, 53 : 1848 - 1852
  • [25] On-chip Energy Harvesting Using Thin-Film Thermoelectric Materials
    Choday, Sri Harsha
    Lu, Chao
    Raghunathan, Vijay
    Roy, Kaushik
    2013 TWENTY NINTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM (SEMI-THERM), 2013, : 99 - 104
  • [26] The Surface Preparation of Thermoelectric Materials for Deposition of Thin-Film Contact Systems
    Shtern, M. Yu
    Karavaev, I. S.
    Shtern, Y., I
    Kozlov, A. O.
    Rogachev, M. S.
    SEMICONDUCTORS, 2019, 53 (13) : 1848 - 1852
  • [27] Phonon blocking electron transmitting superlattice structures as advanced thin film thermoelectric materials
    Venkatasubramanian, R
    RECENT TRENDS IN THERMOELECTRIC MATERIALS RESEARCH III, 2001, 71 : 175 - 201
  • [28] Three-Stage Thin-Film Superlattice Thermoelectric Multistage Microcoolers with a ΔTmax of 102 K
    Gary E. Bulman
    Ed Siivola
    Ryan Wiitala
    Rama Venkatasubramanian
    Michael Acree
    Nathan Ritz
    Journal of Electronic Materials, 2009, 38 : 1510 - 1515
  • [29] Determination of thermal and elastic coefficients of optical thin-film materials
    Michel, S.
    Lemarquis, F.
    Lequime, M.
    ADVANCES IN OPTICAL THIN FILMS III, 2008, 7101
  • [30] Preparation and Thermoelectric Performance of Tellurium Nanowires-based Thin-Film Materials
    Xu Haifeng
    Hou Chengyi
    Zhang Qinghong
    Li Yaogang
    Wang Hongzhi
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (09) : 1034 - 1046