An Adaptive Track Fusion Method with Unscented Kalman Filter

被引:0
|
作者
Shi, Yanjun [1 ]
Yang, Zhengmao [1 ]
Zhang, Tongliang [1 ]
Lin, Na [1 ]
Zhao, Yingkai [1 ]
Zhao, Yunpeng [2 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Water Conservancy Engn Coll, Dalian, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018) | 2018年
关键词
Lidar; Radar; Vision sensor; CTRV; UKF; Adaptive track fusion;
D O I
10.1109/SmartloT.2018.00026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We herein proposed an adaptive track fusion algorithm based on unscented kalman filter (UKF) to improve the tracking accuracy of ground combat targets. This algorithm improved the distributed multi-sensor data fusion system and was used to fuse the data collected from the light, radar and vision sensors on one single combat platform to obtain local track estimation. Then, the local trajectory estimates of all combat platforms in the cluster are combined using an adaptive track synthesis algorithm to obtain the target track Simulation results showed that this method can obtain more accurate trajectories of tracking targets.
引用
收藏
页码:250 / 254
页数:5
相关论文
共 50 条
  • [31] Adaptive Unscented Kalman Filter for Estimation of Modelling Errors for Helicopter
    Song, Qi
    He, Yuqing
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 2463 - +
  • [32] ADAPTIVE UNSCENTED KALMAN FILTER FOR ONLINE SOFT TISSUES CHARACTERIZATION
    Shin, Jaehyun
    Zhong, Yongmin
    Smith, Julian
    Gu, Chengfan
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (07)
  • [33] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [34] Attitude determination for satellite using adaptive unscented Kalman filter
    Xiao L.
    Wang S.-J.
    Chang L.
    Zhou M.-L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (03): : 637 - 645
  • [35] Robust attitude estimation using an adaptive unscented Kalman filter
    Chiella, Antonio C. B.
    Teixeira, Bruno O. S.
    Pereira, Guilherme A. S.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7748 - 7754
  • [36] Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter
    Dunik, Jindrich
    Simandl, Miroslav
    Straka, Ondrej
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2411 - 2416
  • [37] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [38] ECG Signal Denoising using Adaptive Unscented Kalman Filter
    Dutta, Agniva
    Das, Manasi
    2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022, 2022,
  • [39] Nerual Network Assisted Adaptive Unscented Kalman Filter for AUV
    Chen, Xu
    Wu, Shuyi
    Zhang, Xin
    Mu, Xiaokai
    Yan, Tianhong
    He, Bo
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [40] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237