Products of ratios of consecutive integers

被引:10
|
作者
De La Bretèche, R
Pomerance, C
Tenenbaum, G
机构
[1] Ecole Normale Super, F-75230 Paris, France
[2] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[3] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
RAMANUJAN JOURNAL | 2005年 / 9卷 / 1-2期
关键词
extremal problems in number theory; friable integers; sieve; largest prime factor;
D O I
10.1007/s11139-005-0831-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Take the product of the numbers (n/(n + 1))(is an element of n) for 1 <= n < N, where each is an element of(n) is +/- 1. Express the product as a/b in lowest terms. Evidently the minimal possible value for a over all choices for is an element of(n) is 1; just take each is an element of(n) = 1, or each is an element of(n) = 0. Denote the maximal possible value of a by A( N). It is known from work of Nicolas and Langevin that ( log 4 + o( 1)) N <= log A( N) <= (2/ 3 + o(1)) N log N. Using the Rosse-Iwaniec sieve, we improve the lower bound to the same order of magnitude as the upper bound.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [41] THE DIVISOR FUNCTION AT CONSECUTIVE INTEGERS
    HEATHBROWN, DR
    MATHEMATIKA, 1984, 31 (61) : 141 - 149
  • [42] ON MULTIPLICATIVE FUNCTIONS ON CONSECUTIVE INTEGERS
    German, L.
    Katai, I.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (01) : 43 - 53
  • [43] On multiplicative functions on consecutive integers
    L. Germán
    I. Kátai
    Lithuanian Mathematical Journal, 2010, 50 : 43 - 53
  • [44] ON BLOCKS OF N CONSECUTIVE INTEGERS
    EVANS, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (01): : 48 - &
  • [45] THE DIVISOR FUNCTION AT CONSECUTIVE INTEGERS
    HILDEBRAND, A
    PACIFIC JOURNAL OF MATHEMATICS, 1987, 129 (02) : 307 - 319
  • [46] PRIME FACTORS OF CONSECUTIVE INTEGERS
    LEHMER, DH
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (2P2): : 19 - &
  • [47] Prime factors of consecutive integers
    Bauer, Mark
    Bennett, Michael A.
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 2455 - 2459
  • [48] Consecutive integers in the form ax
    Pu, Zhen
    Cheng, Kaimin
    AIMS MATHEMATICS, 2023, 8 (08): : 17620 - 17630
  • [49] ON THE SUM OF CONSECUTIVE INTEGERS IN SEQUENCES
    Tsai, Mu-Tsun
    Zaharescu, Alexandru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 643 - 652
  • [50] ON REPRESENTATIONS AS A SUM OF CONSECUTIVE INTEGERS
    LEVEQUE, WJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (04): : 399 - 405