Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers

被引:14
|
作者
McKinnon, KIM
Smyth, NF
Worthy, AL
机构
[1] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
D O I
10.1364/JOSAB.16.000441
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The compression of a cw into a periodic train of noninteracting solitons by a dispersion-decreasing fiber is investigated with a variational method. To model the evolution from the cw to the soliton train, an elliptic-function-based expression is used as the trial function in the averaged Lagrangian. Both a continuous dispersion variation and a step dispersion variation in the fiber are considered. By use of an optimization method based on the approximate variational equations, the optimal dispersion profile required for achieving maximum pulse compression in a fixed length of fiber is determined. The solutions of the approximate equations are compared with full numerical solutions of the governing nonlinear Schrodinger equation, and good agreement is found. (C) 1999 Optical Society of America [S0740-3224(99)01103-0]. OCIS codes: 190.4370, 190.4360, 190.5530, 060.6370, 060.5530.
引用
收藏
页码:441 / 447
页数:7
相关论文
共 50 条
  • [31] Pulse compression at 1.06 μm in dispersion-decreasing holey fibers
    Tse, M. L. V.
    Horak, P.
    Price, J. H. V.
    Poletti, F.
    He, F.
    Richardson, D. J.
    OPTICS LETTERS, 2006, 31 (23) : 3504 - 3506
  • [32] New dispersion-decreasing dispersion management
    Qiao, HG
    He, CF
    Yu, JL
    Dai, JF
    Yang, E
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS DEVICES, AND APPLICATIONS III, 2004, 5337 : 173 - 177
  • [33] Timing jitter analysis for optical communication systems using ultrashort solitons and dispersion-decreasing fibers
    Essiambre, RJ
    Agrawal, GP
    OPTICS COMMUNICATIONS, 1996, 131 (4-6) : 274 - 278
  • [34] Optimum dispersion profile and pedestal-free soliton pulse compression in dispersion-decreasing fiber
    Vinoj, MN
    Seema, AU
    Kuriakose, VC
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2003, 12 (03) : 291 - 305
  • [35] Soliton interaction in a dispersion-decreasing fiber with effective gain and effective phase modulation
    Ganapathy, R
    Kuriakose, VC
    CHAOS SOLITONS & FRACTALS, 2003, 15 (01) : 99 - 105
  • [36] Experimental study of soliton propagation through 40 km of dispersion-decreasing fiber
    Stentz, AJ
    Boyd, RW
    Evans, AF
    COHERENCE AND QUANTUM OPTICS VII, 1996, : 461 - 461
  • [37] Soliton interaction for a variable-coefficient higher-order nonlinear Schrodinger equation in a dispersion-decreasing fiber
    Huang, Zhi-Ruo
    Wang, Yun-Po
    Jia, Hui-Xian
    Liu, Ying-Fang
    OPTICS AND LASER TECHNOLOGY, 2018, 103 : 151 - 154
  • [38] Phase-shift controlling of three solitons in dispersion-decreasing fibers
    Suzhi Liu
    Qin Zhou
    Anjan Biswas
    Wenjun Liu
    Nonlinear Dynamics, 2019, 98 : 395 - 401
  • [39] Study of Raman soliton self-frequency shift in dispersion-decreasing fiber
    Wen, Shuangchun
    Jiguang Zazhi/Laser Journal, 1998, 19 (04): : 34 - 35
  • [40] Phase-shift controlling of three solitons in dispersion-decreasing fibers
    Liu, Suzhi
    Zhou, Qin
    Biswas, Anjan
    Liu, Wenjun
    NONLINEAR DYNAMICS, 2019, 98 (01) : 395 - 401