Multiclass Skin Lesion Classification Using a Novel Lightweight Deep Learning Framework for Smart Healthcare

被引:48
|
作者
Hoang, Long [1 ]
Lee, Suk-Hwan [2 ]
Lee, Eung-Joo [3 ]
Kwon, Ki-Ryong [1 ]
机构
[1] Pukyong Natl Univ, Dept Artificial Intelligence Convergence, Busan 48513, South Korea
[2] Dong A Univ, Dept Comp Engn, Busan 49315, South Korea
[3] Tongmyong Univ, Div Artificial Intelligence, Busan 48520, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
基金
新加坡国家研究基金会;
关键词
skin lesion classification; medical image processing; deep learning; artificial intelligence; big data; wide-ShuffleNet; mobile healthcare system; CONVOLUTIONAL NEURAL-NETWORKS; METHODOLOGICAL APPROACH; IMAGE; CANCER;
D O I
10.3390/app12052677
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Skin lesion classification has recently attracted significant attention. Regularly, physicians take much time to analyze the skin lesions because of the high similarity between these skin lesions. An automated classification system using deep learning can assist physicians in detecting the skin lesion type and enhance the patient's health. The skin lesion classification has become a hot research area with the evolution of deep learning architecture. In this study, we propose a novel method using a new segmentation approach and wide-ShuffleNet for skin lesion classification. First, we calculate the entropy-based weighting and first-order cumulative moment (EW-FCM) of the skin image. These values are used to separate the lesion from the background. Then, we input the segmentation result into a new deep learning structure wide-ShuffleNet and determine the skin lesion type. We evaluated the proposed method on two large datasets: HAM10000 and ISIC2019. Based on our numerical results, EW-FCM and wide-ShuffleNet achieve more accuracy than state-of-the-art approaches. Additionally, the proposed method is superior lightweight and suitable with a small system like a mobile healthcare system.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Multiclass skin lesion classification in dermoscopic images using swin transformer model
    Ayas, Selen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6713 - 6722
  • [42] Multiclass skin lesion classification in dermoscopic images using swin transformer model
    Selen Ayas
    Neural Computing and Applications, 2023, 35 : 6713 - 6722
  • [43] Intelligent fusion-assisted skin lesion localization and classification for smart healthcare
    Muhammad Attique Khan
    Khan Muhammad
    Muhammad Sharif
    Tallha Akram
    Seifedine Kadry
    Neural Computing and Applications, 2024, 36 : 37 - 52
  • [44] Intelligent fusion-assisted skin lesion localization and classification for smart healthcare
    Khan, Muhammad Attique
    Muhammad, Khan
    Sharif, Muhammad
    Akram, Tallha
    Kadry, Seifedine
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (01): : 37 - 52
  • [45] Skin Lesion Diagnosis Using Deep Learning
    Muresan, Horea-Bogdan
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 499 - 506
  • [46] Cognitive Smart Cities and Deep Learning: A Classification Framework
    Lima, Servio
    Teran, Luis
    2019 SIXTH INTERNATIONAL CONFERENCE ON EDEMOCRACY & EGOVERNMENT (ICEDEG), 2019, : 180 - 187
  • [47] Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network
    Aldhyani, Theyazn H. H.
    Verma, Amit
    Al-Adhaileh, Mosleh Hmoud
    Koundal, Deepika
    DIAGNOSTICS, 2022, 12 (09)
  • [48] Skin Lesion Classification Using a Deep Ensemble Model
    Thwin, Su Myat
    Park, Hyun-Seok
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [49] Wavelet-based deep learning for skin lesion classification
    Serte, Sertan
    Demirel, Hasan
    IET IMAGE PROCESSING, 2020, 14 (04) : 720 - 726
  • [50] Deep Learning-Based Multiple Skin Lesion Classification
    Stefaniga, Sebastian
    Cernaianu, Iasmina
    Ivascu, Todor
    ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 1, EHB-2023, 2024, 109 : 792 - 800