Almost interpolation and radial basis functions

被引:0
|
作者
Le Méhauté, A [1 ]
机构
[1] CNRS, UMR 6629, Lab Jean Leray, F-44322 Nantes, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After a review of some basic facts for Radial Basis Interpolation, we introduce the idea of almost interpolation for RBF, and show that in this setting it is possible to enlarge quite a lot the set of basic radial functions that can be used as basis. Our main result provides a Schoenberg-Whitney type condition for almost interpolation sets.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [41] Ship geometry modelling using radial basis functions interpolation methods
    Ban, D.
    Blagojevic, B.
    Barle, J.
    ADVANCED SHIP DESIGN FOR POLLUTION PREVENTION, 2010, : 307 - 315
  • [42] Behavioral Study of Various Radial Basis Functions for Approximation and Interpolation Purposes
    Cervenka, Martin
    Skala, Vaclav
    2020 IEEE 18TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2020), 2020, : 135 - 140
  • [43] Some issues on interpolation matrices of locally scaled radial basis functions
    Lee, Mun Bae
    Lee, Yeon Ju
    Sunwoo, Hasik
    Yoon, Jungho
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (10) : 5011 - 5014
  • [44] INTERPOLATION BY PIECEWISE-LINEAR RADIAL BASIS FUNCTIONS .1.
    DYN, N
    LIGHT, WA
    CHENEY, EW
    JOURNAL OF APPROXIMATION THEORY, 1989, 59 (02) : 202 - 223
  • [45] Large scattered data interpolation with radial basis functions and space subdivision
    Smolik, Michal
    Skala, Vaclav
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2018, 25 (01) : 49 - 62
  • [46] LOWER BOUNDS FOR NORMS OF INVERSES OF INTERPOLATION MATRICES FOR RADIAL BASIS FUNCTIONS
    SCHABACK, R
    JOURNAL OF APPROXIMATION THEORY, 1994, 79 (02) : 287 - 306
  • [47] Radial basis functions for the multivariate interpolation of large scattered data sets
    Lazzaro, D
    Montefusco, LB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) : 521 - 536
  • [48] Multivariate interpolation with increasingly flat radial basis functions of finite smoothness
    Guohui Song
    John Riddle
    Gregory E. Fasshauer
    Fred J. Hickernell
    Advances in Computational Mathematics, 2012, 36 : 485 - 501
  • [49] Multivariate interpolation with increasingly flat radial basis functions of finite smoothness
    Song, Guohui
    Riddle, John
    Fasshauer, Gregory E.
    Hickernell, Fred J.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (03) : 485 - 501
  • [50] Radial Basis Functions for the interpolation of hemodynamics flow pattern: A quantitative analysis
    Ponzini, R.
    Biancolini, M. E.
    Rizzo, G.
    Morbiducci, U.
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS III, 2012, : 341 - 345