Chaos and information in two-dimensional turbulence

被引:8
|
作者
Clark, Daniel [1 ,2 ]
Tarra, Lukas [1 ,2 ]
Berera, Arjun [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, JCMB, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Kings Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
LYAPUNOV SPECTRUM; CHARACTERISTIC EXPONENTS; ENERGY-SPECTRUM; DIMENSION; PREDICTABILITY; MODEL; ATTRACTORS; COMPUTATION; CASCADE;
D O I
10.1103/PhysRevFluids.5.064608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By performing a large number of fully resolved simulations of incompressible homogeneous and isotropic two-dimensional turbulence, we study the scaling behavior of the maximal Lyapunov exponent, the Kolmogorov-Sinai entropy, and attractor dimension. The scaling of the maximal Lyapunov exponent is found to be in good agreement with the dimensional predictions. For the cases of the Kolmogorov-Sinai entropy and attractor dimension, the simple dimensional predictions are found to be insufficient. A dependence on the system size and the forcing length scale is found, suggesting nonuniversal behavior. The applicability of these results to atmospheric predictability is also discussed.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Two-Dimensional Decaying Elastoinertial Turbulence
    Gillissen, J. J. J.
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [32] Casimir Cascades in Two-Dimensional Turbulence
    Bowman, John C.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 685 - 688
  • [33] Intermittency in two-dimensional turbulence with drag
    Tsang, YK
    Ott, E
    Antonsen, TM
    Guzdar, PN
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [34] Coupled systems of two-dimensional turbulence
    Salmon, Rick
    JOURNAL OF FLUID MECHANICS, 2013, 732
  • [35] Casimir cascades in two-dimensional turbulence
    Bowman, John C.
    JOURNAL OF FLUID MECHANICS, 2013, 729 : 364 - 376
  • [36] Irreversibility inversions in two-dimensional turbulence
    Bragg, Andrew D.
    De Lillo, Filippo
    Boffetta, Guido
    PHYSICAL REVIEW FLUIDS, 2018, 3 (02):
  • [37] Dynamics of decaying two-dimensional turbulence
    A. L. Tseskis
    Doklady Physics, 2002, 47 : 900 - 904
  • [38] Braid Entropy of Two-Dimensional Turbulence
    Nicolas Francois
    Hua Xia
    Horst Punzmann
    Benjamin Faber
    Michael Shats
    Scientific Reports, 5
  • [39] Braid Entropy of Two-Dimensional Turbulence
    Francois, Nicolas
    Xia, Hua
    Punzmann, Horst
    Faber, Benjamin
    Shats, Michael
    SCIENTIFIC REPORTS, 2015, 5
  • [40] Dynamics of decaying two-dimensional turbulence
    Tseskis, AL
    DOKLADY PHYSICS, 2002, 47 (12) : 900 - 904