GS-SVR: Analysis and Prediction of Henan Province Grain Production Using Support Vector Regression

被引:1
|
作者
Wu, Jiadi [1 ,2 ]
Wei, Yuanyuan [3 ]
Huang, He [1 ]
机构
[1] Chinese Acad Sci, Intelligent Agr Engn Lab Anhui Prov, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
关键词
Grain Production; Support Vector Regression; GS-SVR; MACHINES;
D O I
10.1109/CCDC52312.2021.9602825
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chinese government always attaches great importance to food security. The grain output of Henan Province is of great significance to guarantee China's food security. We select the Henan Province Food Production Data Set from 1990 to 2018 in the Henan Statistical Yearbook, including total grain output, sown area, irrigation area, etc. We propose a GS-SVR model to analyze and predict grain production in Henan Province. At the same time, the traditional support vector regression (SVR), Random Forest (RF), Gradient Boosting Decision Tree (GBDT) three methods are compared in this experiment, the experiment shows: The accuracy of the GS-SVR model for predicting grain output in Henan Province exceeds 96%. The GS-SVR model performs better than the other three models.
引用
收藏
页码:2264 / 2268
页数:5
相关论文
共 50 条
  • [31] Evaluation of PC-SAFT model and Support Vector Regression (SVR) approach in prediction of asphaltene precipitation using the titration data
    Meighani, H. Mashhadi
    Ghotbi, C.
    Behbahani, T. Jafari
    Sharifi, Kh.
    FLUID PHASE EQUILIBRIA, 2018, 456 : 171 - 183
  • [32] Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models
    Wen Liu
    Xiangshan Meng
    Qiqi Xu
    Darren R Flower
    Tongbin Li
    BMC Bioinformatics, 7
  • [33] Prediction of Destroyed Floor Depth Based on Principal Component Analysis (PCA)-Genetic Algorithm (GA)-Support Vector Regression (SVR)
    Gao, Weifu
    Han, Jin
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (04) : 3481 - 3491
  • [34] Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades
    Patel, Ashok Kumar
    Chatterjee, Snehamoy
    Gorai, Amit Kumar
    EARTH SCIENCE INFORMATICS, 2019, 12 (02) : 197 - 210
  • [35] Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms
    Balogun, Abdul-Lateef
    Rezaie, Fatemeh
    Quoc Bao Pham
    Gigovic, Ljubomir
    Drobnjak, Sinisa
    Aina, Yusuf A.
    Panahi, Mahdi
    Yekeen, Shamsudeen Temitope
    Lee, Saro
    GEOSCIENCE FRONTIERS, 2021, 12 (03)
  • [36] Development of category-based scoring support vector regression (CBS-SVR) for drought prediction
    Bazrkar, Mohammad Hadi
    Chu, Xuefeng
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (01) : 202 - 222
  • [37] Grain size measurement in optical microstructure using support vector regression
    Gajalakshmi, K.
    Palanivel, S.
    Nalini, N. J.
    Saravanan, S.
    Raghukandan, K.
    OPTIK, 2017, 138 : 320 - 327
  • [38] Software Defect Prediction Using Fuzzy Support Vector Regression
    Yan, Zhen
    Chen, Xinyu
    Guo, Ping
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 2, PROCEEDINGS, 2010, 6064 : 17 - +
  • [39] Prediction of PM10 using Support Vector Regression
    Arampongsanuwat, Soawalak
    Meesad, Phayung
    INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 120 - 124
  • [40] Prediction of water quality parameters using support vector regression
    Pali Sahu
    Shreenivas N. Londhe
    Preeti S. Kulkarni
    Innovative Infrastructure Solutions, 2023, 8