GS-SVR: Analysis and Prediction of Henan Province Grain Production Using Support Vector Regression

被引:1
|
作者
Wu, Jiadi [1 ,2 ]
Wei, Yuanyuan [3 ]
Huang, He [1 ]
机构
[1] Chinese Acad Sci, Intelligent Agr Engn Lab Anhui Prov, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
关键词
Grain Production; Support Vector Regression; GS-SVR; MACHINES;
D O I
10.1109/CCDC52312.2021.9602825
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chinese government always attaches great importance to food security. The grain output of Henan Province is of great significance to guarantee China's food security. We select the Henan Province Food Production Data Set from 1990 to 2018 in the Henan Statistical Yearbook, including total grain output, sown area, irrigation area, etc. We propose a GS-SVR model to analyze and predict grain production in Henan Province. At the same time, the traditional support vector regression (SVR), Random Forest (RF), Gradient Boosting Decision Tree (GBDT) three methods are compared in this experiment, the experiment shows: The accuracy of the GS-SVR model for predicting grain output in Henan Province exceeds 96%. The GS-SVR model performs better than the other three models.
引用
收藏
页码:2264 / 2268
页数:5
相关论文
共 50 条
  • [1] Health Indicators Analysis and Forecast Using Support Vector Regression (SVR)
    Kort, Houssemeddine
    Daoud, Mouna B.
    Nouira, Kaouther
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 1131 - +
  • [2] Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)
    Jayanthi, Sri Lakshmi Sesha Vani
    Keesara, Venkata Reddy
    Sridhar, Venkataramana
    SUSTAINABILITY, 2022, 14 (12)
  • [3] Forecast Analysis of Instant Noodle Demand using Support Vector Regression (SVR)
    Fradinata, E.
    Kesuma, Z. M.
    Rusdiana, S.
    Zaman, N.
    1ST SOUTH ACEH INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (SAICOET), 2019, 506
  • [4] EXTENDED ANALYSIS OF SMOS SALINITY RETRIEVAL BY USING SUPPORT VECTOR REGRESSION (SVR)
    Rains, D.
    Sabia, R.
    Fernandez-Prieto, D.
    Marconcini, M.
    Katagis, T.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2265 - 2268
  • [5] Support Vector Regression (SVR) Prediction for Molybdenum Disulfide Gas Sensor
    Akbari, E.
    Jahanbin, K.
    Afroozeh, A.
    Amiri, Iraj S.
    Yupapin, P.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (11) : 1610 - 1614
  • [6] SamEn-SVR: using sample entropy and support vector regression for bug number prediction
    Zhang, Wen
    Du, Yuhang
    Yoshida, Taketoshi
    Wang, Qing
    Li, Xiangjun
    IET SOFTWARE, 2018, 12 (03) : 183 - 189
  • [7] Dynamic reliability analysis using the extended support vector regression (X-SVR)
    Feng, Jinwen
    Liu, Lei
    Wu, Di
    Li, Guoyin
    Beer, Michael
    Gao, Wei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 126 : 368 - 391
  • [8] Modeling and Siting of wind farms using Support Vector Regression (SVR)
    Asadi, Meysam
    Pourhossein, Kazem
    2019 INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP) & 2019 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2019, : 511 - 516
  • [9] ON THE ASSESSMENT OF SMOS SALINITY RETRIEVAL BY USING SUPPORT VECTOR REGRESSION (SVR)
    Sabia, R.
    Marconcini, M.
    Katagis, T.
    Fernandez-Prieto, D.
    Portabella, M.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1555 - 1558
  • [10] Mining capital cost estimation using Support Vector Regression (SVR)
    Nourali, Hamidreza
    Osanloo, Morteza
    RESOURCES POLICY, 2019, 62 : 527 - 540