Learning-Based Robust Resource Allocation for D2D Underlaying Cellular Network

被引:11
|
作者
Wu, Weihua [1 ,2 ]
Liu, Runzi [3 ]
Yang, Qinghai [1 ,2 ]
Quek, Tony Q. S. [4 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab ISN, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Informat & Control Engn, Xian 710055, Peoples R China
[4] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
基金
新加坡国家研究基金会; 中国博士后科学基金;
关键词
Device-to-device communication; Uncertainty; Resource management; Optimization; Cellular networks; Quality of service; Throughput; D2D communications; resource allocation; robust optimization; chance constraint; SVC; TO-DEVICE COMMUNICATIONS; VEHICULAR COMMUNICATIONS; COMMUNICATION;
D O I
10.1109/TWC.2022.3152260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular user's throughput whilst ensuring a chance constraint for D2D. Then, a robust resource allocation framework is proposed for solving the highly intractable chance constraint, where the CSI uncertainties are represented as a deterministic set and the reliability requirement is enforced to hold for any CSI within it. Then, a symmetrical-geometry-based learning approach is developed to model the uncertain CSI into polytope, ellipsoidal and box. After that, the chance constraint under these uncertainty sets is transformed into computation convenient convex constraints. To overcome the conservatism of symmetrical-geometry-based approach, we develop a support vector clustering (SVC)-based approach to model uncertain CSI as a compact convex uncertainty set. Based on that, the chance constraint is converted into a linear convex set. Then, we develop a bisection search-based power allocation algorithm for solving the resource allocation in D2D underlaying cellular network with the obtained convex constraints. Finally, we conduct the simulation to compare the proposed robust optimization approaches with the non-robust one.
引用
收藏
页码:6731 / 6745
页数:15
相关论文
共 50 条
  • [41] Learning-based resource allocation in D2D communications with QoS and fairness considerations
    Rashed, Salma Kazemi
    Shahbazian, Reza
    Ghorashi, Seyed Ali
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2018, 29 (01):
  • [42] Effective Small Social Community Aware D2D Resource Allocation Underlaying Cellular Networks
    Feng, Zebing
    Feng, Zhiyong
    Gulliver, T. Aaron
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2017, 6 (06) : 822 - 825
  • [43] Resource Allocation for Energy Harvesting-Powered D2D Communication Underlaying Cellular Networks
    Luo, Ying
    Hong, Peilin
    Su, Ruolin
    Xue, Kaiping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (11) : 10486 - 10498
  • [44] Social-Community-Aware Resource Allocation for D2D Communications Underlaying Cellular Networks
    Wang, Fang
    Li, Yong
    Wang, Zhaocheng
    Yang, Zhixing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (05) : 3628 - 3640
  • [45] Resource Allocation for Energy Harvesting Assisted D2D Communications Underlaying OFDMA Cellular Networks
    Yu, Shuo
    Ejaz, Waleed
    Guan, Ling
    Anpalagan, Alagan
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [46] Efficient Resource Allocation for Mobile Social Networks in D2D Communication Underlaying Cellular Networks
    Sun, Yue
    Wang, Tianyu
    Song, Lingyang
    Han, Zhu
    2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2014, : 2466 - 2471
  • [47] An Adaptive Time Division Scheduling Based Resource Allocation Algorithm for D2D Communication underlaying Cellular Networks
    Zheng, Jun
    Chen, Biwei
    Zhang, Yuan
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [48] A QoE-Aware Resource Allocation Algorithm for D2D Communication underlaying Cellular Networks
    Liu, Chengzheng
    Zheng, Jun
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [49] Resource Allocation for Energy Harvesting-Powered D2D Communications Underlaying Cellular Networks
    Wang, Haichao
    Ding, Guoru
    Wang, Jinlong
    Wang, Le
    Tsiftsis, Theodoros A.
    Sharma, Prabhat K.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [50] Resource Management for D2D Underlaying Cellular Network with Hybrid Multiple Access Technologies
    Sun, Zhisheng
    Sheng, Min
    Zhai, Daosen
    Zhang, Yan
    Li, Jiandong
    2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,