Learning-Based Robust Resource Allocation for D2D Underlaying Cellular Network

被引:11
|
作者
Wu, Weihua [1 ,2 ]
Liu, Runzi [3 ]
Yang, Qinghai [1 ,2 ]
Quek, Tony Q. S. [4 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab ISN, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Informat & Control Engn, Xian 710055, Peoples R China
[4] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
基金
新加坡国家研究基金会; 中国博士后科学基金;
关键词
Device-to-device communication; Uncertainty; Resource management; Optimization; Cellular networks; Quality of service; Throughput; D2D communications; resource allocation; robust optimization; chance constraint; SVC; TO-DEVICE COMMUNICATIONS; VEHICULAR COMMUNICATIONS; COMMUNICATION;
D O I
10.1109/TWC.2022.3152260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular user's throughput whilst ensuring a chance constraint for D2D. Then, a robust resource allocation framework is proposed for solving the highly intractable chance constraint, where the CSI uncertainties are represented as a deterministic set and the reliability requirement is enforced to hold for any CSI within it. Then, a symmetrical-geometry-based learning approach is developed to model the uncertain CSI into polytope, ellipsoidal and box. After that, the chance constraint under these uncertainty sets is transformed into computation convenient convex constraints. To overcome the conservatism of symmetrical-geometry-based approach, we develop a support vector clustering (SVC)-based approach to model uncertain CSI as a compact convex uncertainty set. Based on that, the chance constraint is converted into a linear convex set. Then, we develop a bisection search-based power allocation algorithm for solving the resource allocation in D2D underlaying cellular network with the obtained convex constraints. Finally, we conduct the simulation to compare the proposed robust optimization approaches with the non-robust one.
引用
收藏
页码:6731 / 6745
页数:15
相关论文
共 50 条
  • [1] A deep reinforcement learning-based D2D spectrum allocation underlaying a cellular network
    Liang, Yao-Jen
    Tseng, Yu-Chan
    Hsieh, Chi-Wen
    WIRELESS NETWORKS, 2025, 31 (01) : 435 - 441
  • [2] Resource Allocation for D2D Communication Underlaying Cellular Network
    Zeng, Zhen
    He, Xiaoli
    Li, Lun
    Song, Yu
    Li, Hongwei
    Yi, HaiMin
    Yin, XiaoDong
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 94 - 106
  • [3] Resource Allocation for D2D Communications Underlaying a NOMA-Based Cellular Network
    Pan, Yijin
    Pan, Cunhua
    Yang, Zhaohui
    Chen, Ming
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (01) : 130 - 133
  • [4] Distributed resource allocation for D2D communications underlaying cellular network based on Stackelberg game
    Xin Wang
    He Pan
    Ying Shi
    EURASIP Journal on Wireless Communications and Networking, 2022
  • [5] Distributed resource allocation for D2D communications underlaying cellular network based on Stackelberg game
    Wang, Xin
    Pan, He
    Shi, Ying
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2022, 2022 (01)
  • [6] On the Resource Allocation for D2D Underlaying Uplink Cellular Networks
    Omorinoye, Adeola
    Quoc-Tuan Vien
    Tuan Anh Le
    Shah, Purav
    2019 26TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2019, : 108 - 112
  • [7] Resource Allocation based on Clustering for D2D Communications in Underlaying Cellular Networks
    Son, Duck Jo
    Yu, Chang Ha
    Kim, Dong In
    2014 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2014, : 232 - 237
  • [8] Joint Uplink-Downlink Resource Allocation for D2D Underlaying Cellular Network
    Pawar, Praveen
    Trivedi, Aditya
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8352 - 8362
  • [9] Resource Allocation for Device-to-Device (D2D) Communication in Underlaying Cellular Network
    Vaishnav, Umang S.
    Panda, Manoj
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1424 - 1430
  • [10] Distributed Resource Allocation for D2D Communication Underlaying Cellular Networks
    Yin, Rui
    Yu, Guanding
    Zhong, Caijun
    Zhang, Zhaoyang
    2013 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (IEEE ICC), 2013, : 138 - 143