Tomato pest classification using deep convolutional neural network with transfer learning, fine tuning and scratch learning

被引:3
|
作者
Pattnaik, Gayatri [1 ]
Shrivastava, Vimal K. [1 ]
Parvathi, K. [1 ]
机构
[1] Kalinga Inst Ind Technol KIIT, Sch Elect Engn, Bhubaneswar, India
来源
关键词
Agriculture; tomato pest; deep learning; convolutional neural network; pre-trained network; transfer learning; fine tuning; scratch learning;
D O I
10.3233/IDT-200192
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 50 条
  • [21] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [22] Sparse Deep Transfer Learning for Convolutional Neural Network
    Liu, Jiaming
    Wang, Yali
    Qiao, Yu
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2245 - 2251
  • [23] Multiclass Classification of Tomato Leaf Diseases Using Convolutional Neural Networks and Transfer Learning
    Anandh, K. M. Vivek
    Sivasubramanian, Arrun
    Sowmya, V.
    Ravi, Vinayakumar
    JOURNAL OF PHYTOPATHOLOGY, 2024, 172 (06)
  • [24] Rice Pest Identification Based on Convolutional Neural Network and Transfer Learning
    Yang Hongyun
    Xiao Xiaomei
    Huang Qiong
    Zheng Guoliang
    Yi Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [25] An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models
    Ali, Md Shahin
    Miah, Md Sipon
    Haque, Jahurul
    Rahman, Md Mahbubur
    Islam, Md Khairul
    MACHINE LEARNING WITH APPLICATIONS, 2021, 5
  • [26] Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion
    Byra, Michel
    Galperin, Michael
    Ojeda-Fournier, Haydee
    Olson, Linda
    O'Boyle, Mary
    Comstock, Christopher
    Andre, Michael
    MEDICAL PHYSICS, 2019, 46 (02) : 746 - 755
  • [27] Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning
    Gupta, Sonia
    Agrawal, Monika
    Deepak, Desh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [28] Chickpea varietal classification using deep convolutional neural networks with transfer learning
    Saha, Dhritiman
    Manickavasagan, Annamalai
    JOURNAL OF FOOD PROCESS ENGINEERING, 2022, 45 (03)
  • [29] Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study
    Kim, Hak-Sun
    Ha, Eun-Gyu
    Kim, Young Hyun
    Jeon, Kug Jin
    Lee, Chena
    Han, Sang-Sun
    IMAGING SCIENCE IN DENTISTRY, 2022, 52 (02) : 219 - 224
  • [30] Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
    Hasan, Md Mahibul
    Wang, Zhijie
    Hussain, Muhammad Ather Iqbal
    Fatima, Kaniz
    SENSORS, 2021, 21 (22)