Novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries

被引:83
|
作者
Liao, XZ [1 ]
Ma, ZF
Wang, L
Zhang, XM
Jiang, Y
He, YS
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Instrumental Anal Ctr, Shanghai 200030, Peoples R China
关键词
D O I
10.1149/1.1813191
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel synthesis route for LiFePO4 cathode materials was developed based on a ballmilling technique. In the new synthesis route metallic iron powder and iron(III) phosphate were used as the iron source instead of iron(II). A LiFePO4/C composite precursor was prepared by a mechanical/chemical reaction of a stoichiometric mixture of metal iron powder, FePO4 and Li3PO4 center dot 1/2H(2)O together with the proper amount of sucrose as conductive additive precursor. The resulting product was heat-treated at 600 degrees C for 30 min to obtain the LiFePO4/C cathode material. X-ray diffraction analysis indicated olivine type LiFePO4/C product with a pure orthorhombic phase indexed to the Pnmb space group. The LiFePO4/C material shows excellent cycle performance with a high capacity of 164 mAh/g at the 0.1C discharge rate and 137 mAh/g at the 1C discharge rate, respectively. No obviously capacity fade was observed after 60 cycles. (C) 2004 The Electrochemical Society.
引用
收藏
页码:A522 / A525
页数:4
相关论文
共 50 条
  • [41] Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material for Lithium-Ion Batteries
    Qin, Xue
    Wang, Xiaohui
    Xiang, Huimin
    Xie, Jie
    Li, Jingjing
    Zhou, Yanchun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39): : 16806 - 16812
  • [42] Tunable Morphology Synthesis of LiFePO4 Nanoparticles as Cathode Materials for Lithium Ion Batteries
    Ma, Zhipeng
    Shao, Guangjie
    Fan, Yuqian
    Wang, Guiling
    Song, Jianjun
    Liu, Tingting
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (12) : 9236 - 9244
  • [43] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [44] Solvothermal synthesis of hierarchical LiFePO4 microflowers as cathode materials for lithium ion batteries
    Wang, Qiang
    Zhang, Weixin
    Yang, Zeheng
    Weng, Shaoying
    Jin, Zhuojie
    JOURNAL OF POWER SOURCES, 2011, 196 (23) : 10176 - 10182
  • [45] Highly enhanced low-temperature performances of LiFePO4/C cathode materials prepared by polyol route for lithium-ion batteries
    Li, Shaomin
    Liu, Xichuan
    Liu, Guobiao
    Wan, Yang
    Liu, Hao
    IONICS, 2017, 23 (01) : 19 - 26
  • [46] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284
  • [47] Highly enhanced low-temperature performances of LiFePO4/C cathode materials prepared by polyol route for lithium-ion batteries
    Shaomin Li
    Xichuan Liu
    Guobiao Liu
    Yang Wan
    Hao Liu
    Ionics, 2017, 23 : 19 - 26
  • [48] Electrochemical performance of Yb-doped LiFePO4/C composites as cathode materials for lithium-ion batteries
    Goktepe, Huseyin
    RESEARCH ON CHEMICAL INTERMEDIATES, 2013, 39 (07) : 2979 - 2987
  • [49] Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries
    Yin, Xiongge
    Huang, Kelong
    Liu, Suqin
    Wang, Haiyan
    Wang, Hao
    JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4308 - 4312
  • [50] Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries
    Chunsheng Li
    Shaoyan Zhang
    Fangyi Cheng
    Weiqiang Ji
    Jun Chen
    Nano Research, 2008, 1