Atmospheric Brightness Temperature Fluctuations in the Resonance Absorption Band of Water Vapor 1827.2 GHz

被引:4
|
作者
Egorov, Dobroslav P. [1 ]
Kutuza, Boris G. [1 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radioengn & Elect, Dept Remote Sensing Earth & Atmosphere, Moscow 125009, Russia
来源
关键词
Temperature measurement; Microwave radiometry; Atmospheric measurements; Brightness temperature; Absorption; Microwave measurement; fluctuations; microwave; structural function; water vapor; MICROWAVE-RADIATION; SEA;
D O I
10.1109/TGRS.2020.3034533
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The results of processing new experimental data on descending radiation of atmosphere in the resonant band of water vapor absorption from 18 to 27.2 GHz are presented. The experiment was carried out using special multichannel microwave radiometer-spectrometer. Both summer and winter measurement periods for 2018-2019 are considered. When assessing the dynamics of brightness temperature fluctuations, the mathematical apparatus of structural functions is used. The frequency spectra of square root of structural function for various values of temporal interval are shown. Some experimental dependences of square root of structural function on air temperature and absolute humidity observed near the surface of the Earth under clear sky conditions are presented.
引用
收藏
页码:7627 / 7634
页数:8
相关论文
共 50 条
  • [21] The influence of clouds and water vapor on atmospheric absorption
    Arking, Albert
    Geophysical Research Letters, 1999, 26 (17): : 2729 - 2732
  • [22] Far infrared absorption of atmospheric water vapor
    Elsasser, WM
    ASTROPHYSICAL JOURNAL, 1938, 87 (05): : 497 - 507
  • [23] ABSORPTION OF MICRORADIOWAVES BY ATMOSPHERIC WATER VAPOR DIMERS
    VIKTOROV.AA
    ZHEVAKIN, SA
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (03): : 540 - &
  • [24] FAR INFRARED ABSORPTION BY ATMOSPHERIC WATER VAPOR
    FURASHOV, NI
    OPTICS AND SPECTROSCOPY-USSR, 1966, 20 (03): : 234 - &
  • [25] The influence of clouds and water vapor on atmospheric absorption
    Arking, A
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (17) : 2729 - 2732
  • [26] Comparison of atmospheric phase fluctuations with a 22 GHz water vapor line measurements along a single line of sight
    Asaki, Y
    Hirosawa, H
    Ichikawa, M
    Hirabayashi, H
    Kobayashi, H
    Ishiguro, M
    ASTRONOMICAL SITE EVALUATION IN THE VISIBLE AND RADIO RANGE, 2002, 266 : 230 - 237
  • [27] Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data
    Zhou, Fang-Cheng
    Li, Zhao-Liang
    Wu, Hua
    Tang, Bo-Hui
    Tang, Ronglin
    Song, Xiaoning
    Yan, Guangjian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5608 - 5617
  • [28] An infrared absorption band of heavy water vapor
    Norris, WV
    Unger, HJ
    Holmquist, RE
    PHYSICAL REVIEW, 1936, 49 (03): : 0272 - 0272
  • [29] THE ATMOSPHERIC WATER-VAPOR CONTINUUM BELOW 300 GHZ
    LIEBE, HJ
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1984, 5 (02): : 207 - 227
  • [30] Atmospheric Attenuation of 400 GHz Radiation Due to Water Vapor
    Weber, Marcus J.
    Yang, Benjamin B.
    Kulie, Mark S.
    Bennartz, Ralf
    Booske, John H.
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (03) : 355 - 360