High throughput nutritional profiling of pea seeds using Fourier transform mid-infrared spectroscopy

被引:23
|
作者
Karunakaran, Chithra [1 ]
Vijayan, Perumal [2 ]
Stobbs, Jarvis [1 ]
Bamrah, Ramandeep Kaur [2 ]
Arganosa, Gene [2 ]
Warkentin, Thomas D. [2 ]
机构
[1] Canadian Light Source Inc, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[2] Univ Saskatchewan, Dept Plant Sci, Saskatoon, SK S7N 5A8, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Pea seeds; Protein; Starch; Fiber; Phytic acid; Carotenoids; Mid-infrared spectroscopy; Seed quality; CRUDE PROTEIN-CONTENT; COOKING CHARACTERISTICS; INFRARED-SPECTROSCOPY; IRON BIOAVAILABILITY; PHYTIC ACID; PREDICTION; PRODUCTS; PHYTATE; STARCH; CAROTENOIDS;
D O I
10.1016/j.foodchem.2019.125585
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Seed samples from 117 genetically diverse pea breeding lines were used to determine the robustness of Fourier transform mid-infrared spectroscopy (FT-MIR) for the rapid nutritional profiling of seeds. The FT-MIR results were compared to wet chemistry methods for assessing the concentrations of total protein, starch, fiber, phytic acid, and carotenoids in pea seed samples. Of the five partial least square regression models (PLSR) developed, protein, fiber and phytic acid concentrations predicted by the models exhibited correlation coefficients greater than 0.83 when compared with data obtained using the wet chemistry methods for both the calibration and validation sets. The starch PLSR model had a correlation greater than 0.75, and carotenoids had correlation of 0.71 for the validation sets. The methods implemented in this research show the novelty and usefulness of FT-MIR as a simple, fast, and cost-effective technique to determine multiple seed constituents simultaneously.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection
    Lindner, Chiara
    Kunz, Jachin
    Herr, Simon J.
    Wolf, Sebastian
    Kiessling, Jens
    Kuehnemann, Frank
    OPTICS EXPRESS, 2021, 29 (03) : 4035 - 4047
  • [22] Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region
    M. Carbonaro
    A. Nucara
    Amino Acids, 2010, 38 : 679 - 690
  • [23] Differentiation of selected Salmonella enterica serovars by Fourier transform mid-infrared spectroscopy
    Baldauf, Nathan A.
    Rodriguez-Romo, Luis A.
    Yousef, Ahmed E.
    Rodriguez-Saona, Luis E.
    APPLIED SPECTROSCOPY, 2006, 60 (06) : 592 - 598
  • [24] Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region
    Carbonaro, M.
    Nucara, A.
    AMINO ACIDS, 2010, 38 (03) : 679 - 690
  • [25] Mid-infrared supercontinuum-based Fourier transform spectroscopy for plasma analysis
    R. Krebbers
    N. Liu
    K. E. Jahromi
    M. Nematollahi
    O. Bang
    G. Woyessa
    C. R. Petersen
    G. van Rooij
    F. J. M. Harren
    A. Khodabakhsh
    S. M. Cristescu
    Scientific Reports, 12
  • [26] Responses of Leaf Cuticles to Rice Blast: Detection and Identification Using Depth-Profiling Fourier Transform Mid-Infrared Photoacoustic Spectroscopy
    Lv Gaoqiang
    Du Changwen
    Ma Fei
    Shen Yazhen
    Zhou Jianmin
    PLANT DISEASE, 2020, 104 (03) : 847 - 852
  • [27] Mid-infrared optical fiber Fourier transform infrared spectrometer
    Ewing, Kenneth J.
    Shaw, L. Brandon
    Kim, Rick
    Gattass, Rafael R.
    Sanghera, Jas
    Aggarwal, Ish
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XII, 2011, 8018
  • [28] High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy
    Li, Guosheng
    Hu, Dehong
    Xia, Guanguang
    White, J. M.
    Zhang, Conrad
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (07):
  • [29] Determination of grape quality at harvest using Fourier-transform mid-infrared spectroscopy and multivariate analysis
    Versari, Andrea
    Parpinello, Giuseppina P.
    Mattioli, Alessia U.
    Galassi, Sergio
    AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2008, 59 (03): : 317 - 322
  • [30] Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy
    Maidment, Luke
    Zhang, Zhaowei
    Howle, Christopher R.
    Reid, Derryck T.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,