Effect of cobalt addition to NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) on its sintering behavior and electrical properties

被引:6
|
作者
Ishii, Kento [1 ]
Ode, Machiko [1 ]
Mitsuishi, Kazutaka [1 ]
Miyoshi, Shogo [1 ]
Ohno, Takahisa [1 ]
Takada, Kazunori [1 ]
Uchikoshi, Tetsuo [1 ]
机构
[1] Natl Inst Mat Sci, I-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
Lithium-ion battery; All-solid-state; LATP; Low-temperature sintering; Cobalt nitrate; Surface modification; IONIC-CONDUCTIVITY; CATHODE MATERIALS; LITHIUM; ELECTROLYTE; BATTERY; OXIDE; MICROSTRUCTURE; COMPATIBILITY; LICOPO4; LI3PO4;
D O I
10.1016/j.jpowsour.2022.231954
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co ions as a sintering aid were electrostatically adsorbed on the surface of negatively-charged NASICON-type solid electrolyte Li1.3Al0.3Ti1.7(PO4) (3) (LATP) particles using cobalt nitrate hexahydrate in an ethanol solvent. The Co element-modified LATP (Co-LATP) showed the maximum relative density of 80% at the firing temperature of 800(o)C. This value was comparable to the relative density of LATP with no Co addition fired at 1000(o)C. It was observed that the addition of Co promoted neck growth between the LATP particles. During the heating process, the cobalt ions diffuse into the LATP and form a reaction phase, such as LiCoPO4 (LCP), on the surface of the LATP. The electrical conductivity of Co-LATP fired at 800(o)C increased from the Co addition amount of 0.0 to 0.5 wt%, demonstrating that the addition of cobalt contributed to the increase in the conductivity. The addition of an appropriate amount of Co ions to the LATP is effective in order to decrease the process temperature and increase the conductivity.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of addition of LiAlSiO4 on microstructure, phase composition, and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-based solid electrolyte
    Kwatek, K.
    Slubowska-Walkusz, W.
    Nowinski, J. L.
    Krawczynska, A.
    Sobrados, I.
    Diez-Gomez, V.
    Sanz, J.
    CERAMICS INTERNATIONAL, 2024, 50 (07) : 12450 - 12458
  • [42] Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Wang, Qiaohui
    Liu, Lei
    Zhao, Bojie
    Zhang, Lei
    Xiao, Xiao
    Yan, Hao
    Xu, Guoli
    Ma, Lei
    Liu, Yong
    ELECTROCHIMICA ACTA, 2021, 399
  • [43] Kinetic Analysis of Crystallization in Li1.3Al0.3Ti1.7(PO4)3 Glass Ceramics
    Davis, Calvin, III
    Pertuit, Andre L.
    Nino, Juan C.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (10) : 3260 - 3266
  • [44] Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Rosenberger, Andrew
    Gao, Yu
    Stanciu, Lia
    SOLID STATE IONICS, 2015, 278 : 217 - 221
  • [45] The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7 (PO4)3 electrolytes by a sol-gel method
    Yoon, Yongsub
    Kim, Junghoon
    Park, Chanhwi
    Shin, Dongwook
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (04): : 563 - 566
  • [46] Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF
    Kwatek, K.
    Slubowska, W.
    Trebosc, J.
    Lafon, O.
    Nowinski, Jl
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (01) : 85 - 93
  • [47] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    G. B. Kunshina
    O. G. Gromov
    E. P. Lokshin
    V. T. Kalinnikov
    Russian Journal of Inorganic Chemistry, 2014, 59 : 424 - 430
  • [48] Ultrafast crystallization and sintering of Li1.3Al0.3Ti1.7(PO4)3 glass through flash sinter-crystallization
    Campos, Joao V.
    Lavagnini, Isabela R.
    Zallocco, Vinicius M.
    Jesus, Lilian M.
    Rodrigues, Ana C. M.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (03) : 1806 - 1821
  • [49] ION-EXCHANGE PROPERTIES OF NASICON-TYPE PHOSPHATES WITH THE FRAMEWORKS [TI-2(PO4)(3)] AND [TI1.7AL0.3(PO4)(3)]
    HIROSE, N
    KUWANO, J
    JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (01) : 9 - 12
  • [50] Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films
    Xian Ming Wu
    Shang Chen
    Fa Ren Mai
    Jun Hai Zhao
    Ze Qiang He
    Ionics, 2013, 19 : 589 - 593