An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode

被引:50
|
作者
Chen, Bi [1 ]
Ma, Ming [1 ]
Su, Xiaoli [1 ]
机构
[1] Hunan Normal Univ, Coll Chem & Chem Engn, Minist Educ China, Key Lab Chem Biol & Tradit Chinese Med Res, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Penicillin biosensor; Amperometric biosensor; Carbon nanotubes; beta-Lactam antibiotics; beta-Lads mase; LAYER-BY-LAYER; FLOW-INJECTION ANALYSIS; SENSOR; MILK; RESIDUES; UREA; ELECTROCHEMISTRY; ANTIBIOTICS; COMPOSITES;
D O I
10.1016/j.aca.2010.06.014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and beta-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 mu g L-1) for penicillin V. lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [41] A hydrogen peroxide biosensor with high stability based on gelatin-multiwalled carbon nanotubes modified glassy carbon electrode
    Yulin Wang
    Tianyu Li
    Weijie Zhang
    Yaqin Huang
    Journal of Solid State Electrochemistry, 2014, 18 : 1981 - 1987
  • [42] Electrochemical DNA Biosensor Based on the Immobilization of Probe DNA on a Fulleropyrrolidine Derivative Modified Glassy Carbon Electrode
    Shi Juanlan
    Wang Qingxiang
    Chen Jainping
    Zheng Meixia
    Gao Fei
    ACTA CHIMICA SINICA, 2011, 69 (17) : 2015 - 2020
  • [43] An Formaldehyde Biosensor Based on Carbon Nanotubes Modified Electrode
    Zhang Ren-Yan
    Zhang Xue-Ao
    Jia Hong-Hui
    Li Xin-Hua
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (06) : 909 - 914
  • [44] Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)
    Juan Dai
    Dongli Deng
    Yali Yuan
    Jinzhong Zhang
    Fei Deng
    Shuang He
    Microchimica Acta, 2016, 183 : 1553 - 1561
  • [45] Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode
    Wu, KB
    Sun, YY
    Hu, SS
    SENSORS AND ACTUATORS B-CHEMICAL, 2003, 96 (03) : 658 - 662
  • [46] Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)
    Dai, Juan
    Deng, Dongli
    Yuan, Yali
    Zhang, Jinzhong
    Deng, Fei
    He, Shuang
    MICROCHIMICA ACTA, 2016, 183 (05) : 1553 - 1561
  • [47] An Amperometric Hydrogen Peroxide Sensor Based on Reduced Graphene Oxide/Carbon Nanotubes/Pt NPs Modified Glassy Carbon Electrode
    Zhang, Yuanyuan
    Cao, Qi
    Zhu, Fengmei
    Xu, Hedan
    Zhang, Yang
    Xu, Wenfeng
    Liao, Xiaoling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8771 - 8785
  • [48] Amperometric biosensor for hydrogen peroxide based on electrodeposited sub-micrometer gold modified glassy carbon electrode
    Wang, SQ
    Chen, J
    Lin, XQ
    CHINESE JOURNAL OF CHEMISTRY, 2004, 22 (04) : 360 - 364
  • [49] Amperometric Biosensor for Hydrogen Peroxide Based on Electrodeposited Sub-micrometer Gold Modified Glassy Carbon Electrode
    王树青
    陈峻
    林祥钦
    Chinese Journal of Chemistry, 2004, (04) : 360 - 364
  • [50] Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode
    Erden, Pinar Esra
    Kacar, Ceren
    Ozturk, Funda
    Kilic, Esma
    TALANTA, 2015, 134 : 488 - 495