An integrated autoencoder-based filter for sparse big data

被引:3
|
作者
Peng, Wei [1 ]
Xin, Baogui [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Econ & Management, Qingdao, Peoples R China
关键词
Sparse big data; integrated autoencoder (IAE); data sparsity; prediction; filter; STACKED AUTOENCODER; DEEP; PREDICTION; NETWORK; MODEL;
D O I
10.1080/23307706.2020.1759466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel filter for sparse big data, called an integrated autoencoder (IAE), which utilises auxiliary information to mitigate data sparsity. The proposed model achieves an appropriate balance between prediction accuracy, convergence speed, and complexity. We implement experiments on a GPS trajectory dataset, and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 50 条
  • [31] An autoencoder-based deep learning approach for clustering time series data
    Tavakoli, Neda
    Siami-Namini, Sima
    Khanghah, Mahdi Adl
    Soltani, Fahimeh Mirza
    Namin, Akbar Siami
    SN APPLIED SCIENCES, 2020, 2 (05):
  • [32] An autoencoder-based fast online clustering algorithm for evolving data stream
    Gao, Dazheng
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 90 - 95
  • [33] Training Strategies for Autoencoder-based Detection of False Data Injection Attacks
    Wang, Chenguang
    Pan, Kaikai
    Tindemans, Simon
    Palensky, Peter
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 1 - 5
  • [34] Autoencoder-based Anomaly Detection for Time Series Data in Complex Systems
    Gong, Xundong
    Liao, Shibo
    Hu, Fei
    Hu, Xiaoqing
    Liu, Chunshan
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 428 - 433
  • [35] Exploring Autoencoder-based Error-bounded Compression for Scientific Data
    Liu, Jinyang
    Di, Sheng
    Zhao, Kai
    Jin, Sian
    Tao, Dingwen
    Liang, Xin
    Chen, Zizhong
    Cappello, Franck
    2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 294 - 306
  • [36] Autoencoder-based method to assess bridge health monitoring data quality
    Xiao, Bowen
    Di, Jin
    Wang, Jie
    Wu, Guanliang
    Shi, Jiapeng
    Wang, Xiaohai
    Fan, Jiuhong
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (15) : 2367 - 2388
  • [37] An autoencoder-based deep learning approach for clustering time series data
    Neda Tavakoli
    Sima Siami-Namini
    Mahdi Adl Khanghah
    Fahimeh Mirza Soltani
    Akbar Siami Namin
    SN Applied Sciences, 2020, 2
  • [38] Variational autoencoder-based outlier detection for high-dimensional data
    Li, Yongmou
    Wang, Yijie
    Ma, Xingkong
    INTELLIGENT DATA ANALYSIS, 2019, 23 (05) : 991 - 1002
  • [39] Autoencoder-Based fault detection using building automation system data
    El Mokhtari, Karim
    McArthur, J. J.
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [40] Hand Gesture Recognition using Sparse Autoencoder-based Deep Neural Network Based on Electromyography Measurements
    Wang, Yucheng
    Wang, Chunhui
    Wang, Zhonghui
    Wang, Xiaojie
    Li, You
    NANO-, BIO-, INFO-TECH SENSORS, AND 3D SYSTEMS II, 2018, 10597