Long-distance passive dispersal in microscopic aquatic animals

被引:86
|
作者
Fontaneto, Diego [1 ]
机构
[1] Natl Res Council Italy, Water Res Inst, Largo Tonolli 50, I-28922 Verbania, Italy
关键词
Biogeography; Cosmopolitism; Dormancy; Meiofauna; Nematoda; Phylogeography; Rotifera; Tardigrada; TERM ANHYDROBIOTIC SURVIVAL; MITOCHONDRIAL-DNA VARIATION; FRESH-WATER INVERTEBRATES; MCMURDO DRY VALLEYS; BDELLOID ROTIFERS; INTERTIDAL TARDIGRADES; GENE FLOW; BIOGEOGRAPHIC PATTERNS; ANTIOXIDANT DEFENSES; CRYPTIC SPECIATION;
D O I
10.1186/s40462-019-0155-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Long-distance dispersal of wolves in the Dauria ecoregion
    Kirilyuk, Anastasia
    Kirilyuk, Vadim E.
    Ke, Rong
    MAMMAL RESEARCH, 2020, 65 (04) : 639 - 646
  • [22] LONG-DISTANCE DISPERSAL AND SELF-INCOMPATIBILITY
    PANDEY, KK
    NEW ZEALAND JOURNAL OF BOTANY, 1979, 17 (02) : 225 - 226
  • [23] LONG-DISTANCE DISPERSAL OF REEF CORALS BY RAFTING
    JOKIEL, PL
    CORAL REEFS, 1984, 3 (02) : 113 - 116
  • [24] Long-distance dispersal potential in a marine macrophyte
    Harwell, MC
    Orth, RJ
    ECOLOGY, 2002, 83 (12) : 3319 - 3330
  • [25] The importance of long-distance dispersal in biodiversity conservation
    Trakhtenbrot, A
    Nathan, R
    Perry, G
    Richardson, DM
    DIVERSITY AND DISTRIBUTIONS, 2005, 11 (02) : 173 - 181
  • [26] Long-distance dispersal: a framework for hypothesis testing
    Gillespie, Rosemary G.
    Baldwin, Bruce G.
    Waters, Jonathan M.
    Fraser, Ceridwen I.
    Nikula, Raisa
    Roderick, George K.
    TRENDS IN ECOLOGY & EVOLUTION, 2012, 27 (01) : 47 - 56
  • [27] Does polyploidy facilitate long-distance dispersal?
    Linder, H. Peter
    Barker, Nigel P.
    ANNALS OF BOTANY, 2014, 113 (07) : 1175 - 1183
  • [28] Long-distance seed dispersal in plant populations
    Cain, ML
    Milligan, BG
    Strand, AE
    AMERICAN JOURNAL OF BOTANY, 2000, 87 (09) : 1217 - 1227
  • [29] The establishment of plants following long-distance dispersal
    Wu, Zeng-Yuan
    Milne, Richard I.
    Liu, Jie
    Nathan, Ran
    Corlett, Richard T.
    Li, De-Zhu
    TRENDS IN ECOLOGY & EVOLUTION, 2023, 38 (03) : 289 - 300
  • [30] CONSEQUENCES OF LONG-DISTANCE DISPERSAL OF PLANT MACROFOSSILS
    HILL, RS
    NEW ZEALAND JOURNAL OF BOTANY, 1981, 19 (02) : 241 - 242