A note on almost unbiased generalized ridge regression estimator under asymmetric loss
被引:13
|
作者:
Wan, ATK
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
Wan, ATK
[1
]
机构:
[1] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
Using the asymmetric LINEX loss function, we derive and numerically evaluate the exact risk function of the almost unbiased feasible generalized ridge regression estimator. Contrary to the properties of the (biased) feasible generalized ridge estimator, it is found that regardless of the loss asymmetry, the almost unbiased feasible generalized ridge estimator does not strictly dominate the traditional least squares estimator. Our numerical results show that over a wide range of parameter values, the almost unbiased feasible generalized ridge estimator is inferior to either the least squares or the feasible generalized ridge estimators.
机构:
Chongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing, Peoples R ChinaChongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
Huang, Hua
Wu, Jibo
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing, Peoples R ChinaChongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
Wu, Jibo
Yi, Wende
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing, Peoples R ChinaChongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China