Jamming Below Upper Critical Dimension

被引:13
|
作者
Ikeda, Harukuni [1 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan
基金
欧洲研究理事会;
关键词
25;
D O I
10.1103/PhysRevLett.125.038001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extensive numerical simulations in the past decades proved that the critical exponents of the jamming of frictionless spherical particles are the same in two and three dimensions. This implies that the upper critical dimension is d(u) = 2 or lower. In this Letter, we study the jamming transition below the upper critical dimension. We investigate a quasi-one-dimensional system: disks confined in a narrow channel. We show that the system is isostatic at the jamming transition point as in the case of standard jamming transition of the bulk systems in two and three dimensions. Nevertheless, the scaling of the excess contact number shows the linear scaling. Furthermore, the gap distribution remains finite even at the jamming transition point. These results are qualitatively different from those of the bulk systems in two and three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Stable non-uniform black strings below the critical dimension
    Pau Figueras
    Keiju Murata
    Harvey S. Reall
    Journal of High Energy Physics, 2012
  • [22] Electrical critical dimension metrology for 100-nm linewidths and below
    Grenville, A
    Coombs, B
    Hutchinson, J
    Kuhn, K
    Miller, D
    Troccolo, P
    OPTICAL MICROLITHOGRAPHY XIII, PTS 1 AND 2, 2000, 4000 : 452 - 459
  • [23] CORRECTIONS TO LEADING SINGULARITIES IN SYSTEMS AT THE UPPER CRITICAL DIMENSION
    KOGON, HS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (12): : 3253 - 3259
  • [24] Scaling above the upper critical dimension in Ising models
    Parisi, G
    RuizLorenzo, JJ
    PHYSICAL REVIEW B, 1996, 54 (06) : R3698 - R3701
  • [25] Stable non-uniform black strings below the critical dimension
    Figueras, Pau
    Murata, Keiju
    Reall, Harvey S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [26] Existence of an upper critical dimension in the majority voter model
    Yang, Jae-Suk
    Kim, In-mook
    Kwak, Wooseop
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [27] Scaling behaviour of lattice animals at the upper critical dimension
    C. von Ferber
    D. Foster
    H. P. Hsu
    R. Kenna
    The European Physical Journal B, 2011, 83
  • [28] ON THE UPPER CRITICAL DIMENSION OF LATTICE TREES AND LATTICE ANIMALS
    HARA, T
    SLADE, G
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1469 - 1510
  • [29] Scaling behaviour of lattice animals at the upper critical dimension
    von Ferber, C.
    Foster, D.
    Hsu, H. P.
    Kenna, R.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (02): : 245 - 249
  • [30] Possible crossover of a nonuniversal quantity at the upper critical dimension
    Galam, S
    Mauger, A
    PHYSICAL REVIEW E, 2005, 71 (03):