Voronoi diagram of polygonal chains under the discrete Frechet distance

被引:0
|
作者
Bereg, Sergey [1 ]
Buchin, Kevin [2 ]
Buchin, Maike [2 ]
Gavrilova, Marina [3 ]
Zhu, Binhai [4 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[2] Free Univ Berlin, Inst Comp Sci, Berlin, Germany
[3] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[4] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Polygonal chains are fundamental objects in many applications like pattern recognition and protein structure alignment. A well-known measure to characterize the similarity of two polygonal chains is the (continuous/discrete) Frechet distance. In this paper, for the first time, we consider the Voronoi diagram of polygonal chains in d-dimension under the discrete Frechet distance. Given a set C of n polygonal chains in d-dimension, each with at most k vertices, we prove fundamental properties of such a Voronoi diagram VDF (C). Our main results are summarized as follows. The combinatorial complexity of VDF(C) is at most O(n(dk+epsilon)). The combinatorial complexity of VDF(C) is at least Omega(n(dk)) for dimension d = 1, 2; and Omega(n(d(k-l)+2)) for dimension d > 2.
引用
收藏
页码:352 / +
页数:3
相关论文
共 50 条
  • [21] Computing the Discrete Frechet Distance with Imprecise Input
    Ahn, Hee-Kap
    Knauer, Christian
    Scherfenberg, Marc
    Schlipf, Lena
    Vigneron, Antoine
    ALGORITHMS AND COMPUTATION, PT 2, 2010, 6507 : 422 - +
  • [22] An improved approximation algorithm for the discrete Frechet distance
    Chan, Timothy M.
    Rahmati, Zahed
    INFORMATION PROCESSING LETTERS, 2018, 138 : 72 - 74
  • [23] Middle curves based on discrete Frechet distance
    Ahn, Hee-Kap
    Alt, Helmut
    Buchin, Maike
    Oh, Eunjin
    Scharf, Ludmila
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2020, 89
  • [24] The Geodesic Farthest-Site Voronoi Diagram in a Polygonal Domain with Holes
    Bae, Sang Won
    Chwa, Kyung-Yong
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 198 - 207
  • [25] COMPUTING THE DISCRETE FRECHET DISTANCE WITH IMPRECISE INPUT
    Ahn, Hee-Kap
    Knauer, Christian
    Scherfenberg, Marc
    Schlipf, Lena
    Vigneron, Antoine
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2012, 22 (01) : 27 - 44
  • [26] Optimized Discrete Frechet Distance between trajectories
    Devogele, Thomas
    Etienne, Laurent
    Esnault, Maxence
    Lardy, Florian
    BIGSPATIAL 2017: PROCEEDINGS OF THE 6TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ANALYTICS FOR BIG GEOSPATIAL DATA (BIGSPATIAL-2017), 2017, : 11 - 19
  • [27] COMPUTING THE DISCRETE FRECHET DISTANCE IN SUBQUADRATIC TIME
    Agarwal, Pankaj K.
    Ben Avraham, Rinat
    Kaplan, Haim
    Sharir, Micha
    SIAM JOURNAL ON COMPUTING, 2014, 43 (02) : 429 - 449
  • [28] Constructing the Internal Voronoi Diagram of Polygonal Figure Using the Sweepline Method
    Mestetskiy, L. M.
    Koptelov, D. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (04) : 292 - 303
  • [29] Go with the Flow: The Direction-Based Frechet Distance of Polygonal Curves
    de Berg, Mark
    Cook, Atlas F.
    THEORY AND PRACTICE OF ALGORITHMS IN COMPUTER SYSTEMS, 2011, 6595 : 81 - 91
  • [30] A Practical Solution for Aligning and Simplifying Pairs of Protein Backbones under the Discrete Frechet Distance
    Wylie, Tim
    Luo, Jun
    Zhu, Binhai
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT III, 2011, 6784 : 74 - 83